• 제목/요약/키워드: Object of Interest(OOI)

검색결과 8건 처리시간 0.022초

Fast Extraction of Objects of Interest from Images with Low Depth of Field

  • Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
    • ETRI Journal
    • /
    • 제29권3호
    • /
    • pp.353-362
    • /
    • 2007
  • In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.

  • PDF

시각 주의와 영상 분할을 이용한 관심 객체 자동 검출 기법 (Automatic Detection of Objects-of-Interest using Visual Attention and Image Segmentation)

  • 신도경;문영식
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.137-151
    • /
    • 2014
  • 본 논문에서는 일반적인 자연 영상에서 관심 객체를 자동으로 검출하기 위한 방법을 제안한다. 영상에서의 관심 객체는 사람에 따라서 주관적으로 판단되며, 일반적으로 사람의 시각은 관심 객체에 초점이 맞춰지게 된다. 관심 객체의 자동 검출을 위한 첫 번째 단계로서 사람의 시각 인지기반의 돌출 맵을 이용하여 관심 객체의 후보 영역을 검출한다. 검출된 후보영역은 객체에 대한 대략적인 위치 정보를 가지고 있지만 관심 객체를 정확하게 분할하지 못하는 문제점이 존재한다. 따라서 두 번째 단계에서 영상의 색상과 에지를 고려한 그래프 기반의 영상 분할 기법과 객체 영역의 세선화(skeletonization)를 결합함으로써 정확한 객체 영역을 자동으로 검출한다. 본 논문에서는 제안하는 방법과 기존 방법들의 성능을 비교하기 위해서 정확률(precision), 재현율(recall) 그리고 정밀도(accuracy)를 계산하였다. 그 결과, 제안하는 방법은 미 검출(under detection) 및 과검출(over detection)에 대한 문제점을 줄임으로써 기존 방법보다 더 향상된 결과를 보인다.

다중 객체가 존재하는 ERP 영상에서 행동 인식 모델 성능 향상을 위한 전처리 기법 (Preprocessing Technique for Improving Action Recognition Performance in ERP Video with Multiple Objects)

  • 박은수;김승환;류은석
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.374-385
    • /
    • 2020
  • 본 논문에서 Equirectangular Projection(ERP) 영상으로 행동 인식을 할 때의 문제점들을 해결할 수 있는 전처리 기법을 제안한다. 본 논문에서 제안하는 전처리 기법은 사람 객체를 행동의 주체 즉, Object of Interest(OOI)로 가정하고, OOI의 주변 영역을 ROI로 가정한다. 전처리 기법은 3개의 모듈로 이루어져 있다. I) 객체 인식 모델로 영상 내 사람 객체를 인식한다. II) 입력 영상에서 saliency map을 생성한다. III) 인식된 사람 객체와 saliency map을 이용하여 행동의 주체를 선정한다. 이후 행동 인식 모델에 선정된 행동의 주체 boundary box를 입력하여 행동 인식 성능을 높인다. 제안하는 전처리기법을 사용한 데이터를 행동 인식 모델에 입력한 방법의 성능과 원본 ERP 영상을 입력한 방법의 성능을 비교하였을 때 최대 99.6%의 성능 향상을 보이며, OOI가 감지되는 프레임만을 추출하였을 때 행동 관련 영상 요약의 효과도 볼 수 있다.

실시간 원격 강의에서 영상 인코딩 기법을 적용하기 위한 요소 (Parameters to Select the Image Encoding in Real Time Remote Lecture)

  • 이부권;서영건;박순화;김호용;김형준
    • 디지털콘텐츠학회 논문지
    • /
    • 제9권4호
    • /
    • pp.687-695
    • /
    • 2008
  • 원격 실시간 강의에서 사용될 수 있는 정지 영상 압축은 관심객체 코딩을 미리 코딩하고 배경을 전송하는 방법을 쓸 수 있다. 관심객체의 기능은 영상의 특정 부분이 다른 영역보다 더 중요한 의미를 갖도록 하는 응용에서 중요하다. 이런 경우에, 그 영역은 배경보다 더 높은 품질로 압축되어야 한다. JPEG2000은 다양한 관심객체 코딩 기법을 제공하며, 많은 연구자들이 이런 우선 처리를 할 수 있도록 다양한 연구를 해 왔다. 그러나 모든 응용에 적용 가능한 관심객체 코딩 기법은 존재하지 않는다. 그래서 본 연구는 원격 실시간 강의를 위한 JPEG2000에서 가장 좋은 관심객체 코딩 기법을 적용하기 위하여 요구사항에 맞는 선택 사항들을 보인다. 또한, 선택된 방법들이 가장 좋은 파라미터를 결정하는 실험적 결과도 보인다.

  • PDF

낮은 피사계 심도 영상에서 관심 물체의 효율적인 추출 방법 (An Efficient Object Extraction Scheme for Low Depth-of-Field Images)

  • 박정우;이재호;김창익
    • 한국멀티미디어학회논문지
    • /
    • 제9권9호
    • /
    • pp.1139-1149
    • /
    • 2006
  • 본 논문은 낮은 피사계 심도 영상(low depth-of-field image)에 대해 사용자의 도움 없이 포커스 된 관심 영역을 고속으로 추출하는 효율적인 방법을 제안한다. 우리는 입력 영상에 존재하는 고주파 성분을 HOS(higher order statistics) 계산을 함으로써 영상의 포커스 된 영역을 찾아내는 중요한 지표로 활용한다. 본 논문에서 제안하는 방법은 크게 4가지 단계로 구분할 수 있다. 첫 번째 단계에서는 기존 연구[1] 방법과 동일하게 모든 화소에 관해 HOS 지도를 계산하고 블록화한다. 두 번째 단계에서는 블록화 된 HOS를 이용하여 포커스 된 물체가 존재하는 후보 관심 영역을 대략적으로 구한다. 이후 관심 영역 내부에 존재하는 구멍(hole)을 제거하기 위해 구멍(hole) 추적 및 제거 연산을 수행한다. 마지막으로 최종 관심 후보 영역에서 배경 부분의 화소만 제거하여 포커스 된 관심 물체만을 섬세하게 추출한다. 제안하는 방법은 기존 방법[1]에 비해 정지 영상에서 고속으로 관심 영역을 추출하므로 추후 알고리즘의 변형 없이 낮은 피사계 심도의 동영상에 확장 적용하여 관심 영역을 실시간으로 추출할 수 있다. 본 논문에서 제안하는 방법은 가상 현실(VR)이나 실감 방송, 비디오 인덱싱 시스템과 같은 여러 응용 분야에 효과적으로 적용될 수 있고, 이러한 유용성은 실험 결과를 통해 보였다.

  • PDF

능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적 (Stereo Images-Based Real-time Object Tracking Using Active Feature Model)

  • 박민규;장종환
    • 정보처리학회논문지B
    • /
    • 제16B권2호
    • /
    • pp.109-116
    • /
    • 2009
  • 본 논문에서는 스테레오 영상 기반에서 능동 특징점 모델(active feature model)과 광류(optical flow)를 이용한 객체 추적 기술을 제안한다. 스테레오의 기하학적 정보와 변위를 이용하여 관심 객체와 특징점의 2.5차원 이동 정보(translation information)를 계산한다. 이 정보를 이용하여 폐색 객체의 특징점의 이동 정보를 예측하여 추적 성능을 개선하였다. 정형(rigid) 및 비정형(non-rigid) 객체에 실험을 하였다. 실험 결과 복잡한 배경 속에서의 실시간 객체 추적이 가능하였다. 또한 정형, 비정형 객체에 관계없이 추적이 가능 하였으며 폐색 상황에 향상된 결과를 보였다.

360 도 ERP 영상에서 행동 인식 모델 성능 향상을 위한 전처리 기법 (Preprocessing Methods for Action Recognition Model in 360-degree ERP Video)

  • 박은수;유재성;김승환;류은석
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.252-255
    • /
    • 2019
  • 본 논문에서 Equirectangular projection(ERP) 영상을 행동 인식 모델에 입력하기전 제안하는 전처리를 통하여 성능을 향상시키는 것을 보인다. ERP 영상의 특성상 행동 인식을 하는데 불필요한 영역이 일반적인 2D 카메라로 촬영한 영상보다 많다. 또한 행동 인식은 사람이 Object of Interest(OOI)이다. 따라서 객체 인식모델로 인간 객체를 인식한 후 Region of Interest(ROI)를 추출하여 불필요한 영역을 없애고, 왜곡 또한 줄어든다. 본 논문에서 제안하는 기법으로 전처리 후 CNN-LSTM 모델로 성능을 테스트했다. 제안하는 방법으로 전처리를 한 데이터와 하지 않은 데이터로 행동 인식을 한 정확도로 비교하였으며 제안하는 기법으로 전처리 한 데이터로 행동 인식을 한 경우 데이터의 특성에 따라 다르지만, 최대 61%까지 성능향상을 보였다.

  • PDF

낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출 (Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences)

  • 박정우;김창익
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.851-861
    • /
    • 2006
  • 영상을 낮은 피사계 심도로 찍는 카메라 기법은 전통적으로 널리 이용되는 영상 취득 기술이다. 이 방법을 사용하면 사진사가 사진이나 동영상을 찍을 때 영상의 관심 영역에만 포커스를 두어 선명하게 표현하고 나머지는 흐릿하게 함으로써 자신의 의도를 보는 이에게의 분명하게 전달 할 수 있다. 본 논문은 이러한 피사계 심도가 낮은 동영상 입력에 대하여 사용자의 도움 없이 포커스 된 비디오 객체를 추출하는 새로운 방법을 제안한다. 본 연구에서 제안하는 방법은 크게 두 모듈로 나뉜다. 첫 번째 모듈에서는 동영상의 첫 번째 프레임에 대해서 포커스 된 영역과 그렇지 않은 흐릿한 부분을 자동으로 구분하여 관심 물체만을 추출한다. 두 번째 모듈에서는 첫 번째 모듈에서 구한 관심 물체의 모델을 바탕으로 동영상 프레임에서의 관심 물체만을 실시간이나 실시간에 가깝게 추출한다. 본 논문에서 제안하는 방법은 가상현실(VR)이나 실감 방송, 비디오 인덱싱 시스템과 같은 여러 응용 분야에 효과적으로 적용될 수 있고, 이러한 유용성은 실험 결과를 통해 보였다.