• 제목/요약/키워드: Object Space

검색결과 1,802건 처리시간 0.025초

Strategy of Object Search for Distributed Autonomous Robotic Systems

  • Kim Ho-Duck;Yoon Han-Ul;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권3호
    • /
    • pp.264-269
    • /
    • 2006
  • This paper presents the strategy for searching a hidden object in an unknown area for using by multiple distributed autonomous robotic systems (DARS). To search the target in Markovian space, DARS should recognize th ε ir surrounding at where they are located and generate some rules to act upon by themselves. First of all, DARS obtain 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to research for a target object while navigating in a un known hallway where some obstacles were placed. In the end of this paper, we present the results of three algorithms - a random search, an area-based action making process to determine the next action of the robot and hexagon-based Q-learning to enhance the area-based action making process.

패션윈도우 디스플레이에 나타난 데페이즈망(Depaysement) - 미국, 프랑스, 일본 백화점을 중심으로 - (Depaysement expressed in Fashion Window Display - Focused on Department stores in US, France and Japan -)

  • 허승연;이연희
    • 복식
    • /
    • 제64권3호
    • /
    • pp.1-12
    • /
    • 2014
  • The purpose of this study is to investigate the Depaysement techniques in a new perspective, which are applicable to fashion window display. It was investigated by studying the case of Depaysement expressed in contemporary fashion window display. The analysis object of this study was limited to window displays shown at the world's most famous department stores in the last five years. The data was collected through related specialty publications and each department store's websites. The framework for analysis of this study is established by relevant precedent studies. The results of this study were drawn form comparative quantitative analysis from an expert group. Through the study, the characteristics of Depaysement in the contemporary fashion window display were classified into 'Change of forms and materials', 'Heterogeneous combination of objects', 'Location change of an object', 'Conversion of recognition on an object' and 'Change of spatial awareness'. The expression approaches were 'Change of scale', 'Change of materials', 'Combination of heterogeneous objects', 'Heterogeneous combination', 'Arrangement of object in a strange space', 'Change of display method', 'Overlapped object', 'Paradoxical image', 'Variable awareness of boundary' and 'Reorganization of interior space and change of materials'.

SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션 (Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids)

  • 김석열;박진아
    • 한국가시화정보학회지
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적 (Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space)

  • 진태석;하시모토 히데키
    • 로봇학회논문지
    • /
    • 제2권1호
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

축소 차원 형상 공간을 이용한 협조작업 두 팔 로봇의 충돌 회피 경로 계획 (Collision-free path planning for two cooperating robot manipulators using reduced dimensional configuration space)

  • 최승문;이석원;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.904-907
    • /
    • 1996
  • In this paper, we propose an efficient collision-free path planning method of two cooperating robot manipulators grasping a common object rigidly. For given two robots and an object, the procedure is described which constructs the reduced dimensional configuration space by the kinematic analysis of two cooperating robot manipulators. A path planning algorithm without explicit representation of configuration obstacles is also described. The primary steps of the algorithm is as follows. First, we compute a graph which represents the skeleton of the free configuration space. Second, a connection between an initial and a goal configuration to the graph is searched to find a collision-free path.

  • PDF

손실 반공간에 묻힌 원통형 산란체의 검출 및 영상제구성에 의한 식별 (Iterative Teconstruction of a Cylinder Buried in the Lossy Half Space)

  • 김정석;나정웅
    • 한국전자파학회논문지
    • /
    • 제11권6호
    • /
    • pp.939-945
    • /
    • 2000
  • 손실 반공간 묻혀 원동형 산란체와 주면 매질의 특성을 반복 기법 최적화 역산란을 적용하여 구했다. 산란파는 경계요소법을 이용하여 계산하였으며 산란체의 크기, 위치 내부매질의 비유전율, 도전율, 주변 매질의 비유전율, 도전율 등의 파라미터는 측정 산란파로부터 유전 알고리즘과 Levenberg-Marquardt 알고리즘의 혼합 알고리즘을 이요하여 역으로 계산하였다. 산란타의 측정오차에 의한 illposedness는 파수 영역에서 자수함수적으로 감쇠하는 감쇠모드를 제거하여 안정하시켰다.

  • PDF

Analysis of Internal Loading at Multiple Robotic Systems

  • Chung Jae Heon;Yi Byung-Ju;Kim Whee Kuk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1554-1567
    • /
    • 2005
  • When multiple robotics systems with several sub-chains grasp a common object, the inherent force redundancy provides a chance of utilizing internal loading. Analysis of grasping space based internal loading is proposed in this work since this method facilitates understanding the physical meaning of internal loadings in some applications, as compared to usual operational space based approach. Investigation of the internal loading for a triple manipulator has been few as ,compared to a dual manipulator. In this paper, types of the internal loading for dual and triple manipulator systems are investigated by using the reduced row echelon method to analyze the null space of those systems. No internal loading condition is derived and several load distribution schemes are compared through simulation. Furthermore, it is shown that the proposed scheme based on grasping space is applicable to analysis of special cases such as three-fingered and three-legged robots having a point contact with the grasped object or ground.

게임 공간의 분류와 시나리오의 시간 및 공간 동기화 표현법 (The Classification of Game Spaces and the Notations for Spatio-Temporal Synchronization on a Scenario)

  • 하수철;성해경
    • 한국정보처리학회논문지
    • /
    • 제6권10호
    • /
    • pp.2630-2641
    • /
    • 1999
  • Most of the previous game development has proceeded in the approaches of the temporal-oriented synchronization because of producing game objects by using general authoring tools, and ad hoc or trial and error methods has been devised for representation of spatial concept. This paper is a study on the unification notation for spatio-temporal synchronization to conquest this fault. First of all, we classify game space as temporal object, spatial object, absolute/relative spatio-temporal space. The spatio-temporal relationships are divided into temporal extent, temporal location, spatial extent, and spatial location. In the paper the temporal and spatial relationships of game scene are defined to represent the synchronization, and we propose new unification notation by temporal and spatial concept to represent two concepts putting emphasis on space. Their relationships are presented on 3D by creating time axis related with time in scene unit of the two dimensional plane in the pivot on space. The usability of this representation method are shown by applying examples of game scenario.

  • PDF

Bounding volume estimation algorithm for image-based 3D object reconstruction

  • Jang, Tae Young;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Seong Dae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권2호
    • /
    • pp.59-64
    • /
    • 2014
  • This paper presents a method for estimating the bounding volume for image-based 3D object reconstruction. The bounding volume of an object is a three-dimensional space where the object is expected to exist, and the size of the bounding volume strongly affects the resolution of the reconstructed geometry. Therefore, the size of a bounding volume should be as small as possible while it encloses an actual object. To this end, the proposed method uses a set of silhouettes of an object and generates a point cloud using a point filter. A bounding volume is then determined as the minimum sphere that encloses the point cloud. The experimental results show that the proposed method generates a bounding volume that encloses an actual object as small as possible.

A new derivation method of the generalized Jacobian matrix of a space robot and its application to a multi-robot system

  • Kobayashi, Jun;Nakatsuka, Keiichi;Katoh, Ryozo;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.799-802
    • /
    • 1997
  • This paper deals with a new method to derive the Generalized Jacobian Matrix of a space robot. In a conventional method to derive the Generalized Jacobian Matrix, generalized coordinates select Joint angles and a space robot body's position and attitude angle. But, in this paper, we select position and attitude angle of the end-effector or the handled floating object as generalized coordinates. Then, we can derive the Generalized Jacobian Matrix of the system which consists of several space robots and a handled floating object. Moreover control methods operated by only one space robot can be easily extended to the cases of cooperation task by several space robots. Computer simulations show that the Generalized Jacobian Matrix derived here is effective.

  • PDF