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Abstract This paper deals with a new method to derive the Generalized Jacobian Matrix of a space robot. In a
conventional method to derive the Generalized Jacobian Matrix, generalized coordinates select joint angles and a space
robot body’s position and attitude angle. But, in this paper, we select position and attitude angle of the end-effector
or the handled floating object as generalized coordinates. Then, we can derive the Generalized Jacobian Matrix of
the system which consists of several space robots and a handled floating object. Moreover, control methods operated
by only one space robot can be easily extended to the cases of cooperation task by several space robots. Computer
simulations show that the Generalized Jacobian Matrix derived here is effective.
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1 Introduction

Operations in space are high risk activities for as-
tronauts and not efficiency, because the environment of
space is different from that of the terrestrial, for exam-
ple, micro gravity, high vacuum, and so on. Therefore,
space robots are expected to replace astronauts in future
space missions.

Operational ability of a space robot depends on its
scale, and the scale of a space robot is restricted by the
capacity of a rocket, which is used to launch the space
robot into space. For this reason, the cooperation by
several smaller space robots Is necessary in space devel-
opment.

Many control methods for space robot have been re-
ported [1] [2], most of them are designed based on the
Generalized Jacobian Matrix and conventional control
methods, for example, Resolved Motion Rate Control
and Resolved Acceleration Control and so on. However,
these methods are only effective for the cases that a sin-
gle robot 1s used in operation.

We propose a new method to derive the Generalized
Jacobian Matrix for space robot. In a conventional
method of deriving the Generalized Jacobian Matrix,
joint angles and space robot body’s position and atti-
tude angle are selected as generalized coordinates of the
space robot. But in this paper, we select the end-effector
or the handled floating object’s position and attitude
angle as generalized coordinates. Then, we can derive
the Generalized Jacobian Matrix of the system which
consists of several space robots and a handled floating
object. Moreover, control methods operated by only one
space robot can be easily extended to the cases of the
cooperation task by several space robots.

799

2 Modeling

In this paper, we consider the space robot systems
shown in Fig.(1) and Fig.(2). The system shown in
Fig.(1) is called ”"R-O system”. The system called "R-
O-R system” is shown in Fig.(2). 'R’, 'O’ and - mean
a robot, a object and a manipulator respectively.

Although these model are represented in plane, we
consider the operational space is 3 dimension, the
D.O.F. of Robotl, Robot2 is ny, ns respectively.

Assumptions and symbols used in this paper are de-
fined as follows.

[Assumptions]

1. All elements of the system are rigid.

2. No external force acts on the system, i.e., the conser-
vation laws of momentum and angular momentum stand
up.

3. The initial momentum and angular momentum of the
sytem are zero.

[Symbols]

Pin position vector of the interested point

pk position vector of the joint i of the robot k
rf . position vector of the center of mass
of the link 7 of the robot k
ry © position vector of the center of the mass
of the system
b0 attitude angle of the floating object
ok angle of the point grasped by robot k
ok angle of the joint i of robot k
E unit matriz
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Figure 2: R-O-R System Model

3 Derivation of Kinematic Relation
(Generalized Jacobian Matrix : GIM)

A derivation method of the Generalized Jacobian Ma-
trix of a space robot is already proposed [2]. In his
method, generalized coordinates select joint angles and
a space robot body’s position and attitude angle.

In this paper, we select position and attitude angle of
the end-effector or the handled floating object as gener-
alized coordinates.
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First, we define a manipulation variable vector of the
interested point as follows:

us:(

Then, following equation stand up,
o (z)
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where
> € §Rm X6

is Jacobian Matrix of the manipulation variable vector
v for (vg,wg)T. Now, vy is a velocity vector of the
floating object, wy is an angular velocity vector of the
floating object.

The conservation laws of momentum and angular mo-
mentum of R-O system can be described as follows:
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where P, L is momentum and angular momentum of
the system respectively.
From Eq.(3), the following equation is given.
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Substituting Eq.(4) for (voT,w!)T in Eq.(2), Kine-
matic Relation of R-O system, we have

) =-H;'H.¢

v=J, (5)

where A
L 3
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is Generalized Jacobian Matrix of v for ¢.



4 Application to a multi-robot system

In this chapter, we derive the Kinematic Relation
(GJM) of R-O-R system by the above method.

For R-O-R system, Eq.(2) stand up, too. Similarly to
R-O system, the conservation laws of momentum and
angular momentum of R-O-R system can be described
as follows:

P v .
(L):H,(w‘(’)>+Hm¢=0, (6)
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However, I, Jrw, Iy, Jri and Jg; are different from
those in R-O system.

Therefore, similarly to R-O system, the Kinematic
Relation of R-O-R system becomes

J:nt(é&'

5 Computer Simulation

v =

O

In this chapter, we verify the validity of the GJM
derived in the preceding section by the computer sim-
ulation. We design Resolved Motion Rate Control for
R-O system and R-O-R system.

5.1 Resolved Motion Rate Control
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From Eq.(5) or Eq.(7), the Resolved Motion Rate

Control law is obtained as follows:

¢cd = [‘I:nt]tud + [‘I'nt]t‘]mt) (8)
where
d)cd joint angular velocity command
vy desired manipulation variable
k . any n order vector
(2.0 pseudo inverse matriz of J},,.

To implement the RMRC by digital computers,
RMRC law must be discretized. For R-O system, we
discretized Eq.(8) as follows:

bea(k) = [Tin (R {a(k +1) -

For R-O-R system, we have

Ae(k)}.  (9)

Rl: d?cd(k) [Tine(k, k= DN wa(k + 1) — Ae(k)}, (10)
R2: ¢y(k) = [Tia,(k — LB {va(k + 1) — Ae(k)}, (11)
where
< {Pas(k+1) - Pd(k)}/T )
{0 (k+ 1) do(k)}/T )’
( mtd - mt(k) >
boa(k) — do(k) ’

A= dwg{/\l,)\z,/\a}-

Now, vector k is set up zero vector. J;,,(m,n) is the
GJM that contained the joint angles of Robotl at the
discrete time mT and the joint angles of Robot2 at the
discrete time nT.

Eq.(10),Eq.(11) is the discrete time RMRC law for
the Robotl, Robot2 respectively.

We consider one sampling period as the computa-
tional time delay in Eq.(9), Eq.(10) and Eq.(11). More-
over, in Eq.(10) and Eq.(11), one sampling period of
the communication time delay is considered. In order
to compensate tracking errors of position and attitude
angle, feedback —Ae(k) is added to the control mmput.

5.2 Simulation Conditions

Computer simulations were carried out under the fol-
lowing conditions. Space Robots rotate a floating object
to 30.0[degree] from the initial position, and fix the cen-
ter of mass of the object.

Physical parameters of the space robots and the float-
ing object are shown in Tablel and Table2.

Tablel Physical Parameters of the space robots

[ || Linkl, 2 | Link3 |
Mass [kg] 1000 | 1000
Moment of Inertia [kgm?] 33.33 | 333.3
Length [m] 2.0 2.0
Table2 Physical Parameters of the floating object
| [| Object |
Mass [kg] 1000
Moment of Inertia [kgm?®] || 333.3
Length [m] 2.0




The sampling period T is 0.01{sec.], and the feedback
gain X; is —0.3.

5.3 Simulation Results

Fig.(3) ~ Fig.(6) show simulation results. Simula- )
tion results show that the GJM derived by the proposed Initial Posture Object
method is effective for the multi-robot system. S
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the end-effetor or the handled floating object’s position,
attitude angle and joint angles are selected as gener-
alized coordinates of the space robot. Using the pro-
posed method, we can easily derive the Generalized Ja-
cobian Matrix of the system which consists of several
space robots and a handled floating object. Computer
simulation results showed that the Generalized Jacobian
Matrix derived by the proposed method is effective for
the multi-robot system.
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