• 제목/요약/키워드: Object Segmentation and Tracking

검색결과 102건 처리시간 0.027초

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법 (Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter)

  • 임수창;김도연
    • 한국정보통신학회논문지
    • /
    • 제20권8호
    • /
    • pp.1537-1545
    • /
    • 2016
  • 실시간영상에서 객체의 분할 및 추적은 침입자 감시와 로봇의 물체 추적, 증강현실의 객체 추적등 다양한 분야에서 사용되고 있다. 본 논문에서는 초기 입력 영상의 일부를 학습하여 배경모델로 제작한 후, 배경제거 방법을 이용하여 움직이는 객체의 분할을 통해 객체를 검출하였다. 검출된 객체의 영역을 기반으로 HSV 색상히스토그램과 파티클 필터를 이용하여 객체의 움직임을 추적하는 방법을 제안한다. 제안한 분할 방법은 평균 배경모델을 이용한 방법보다 주변환경 변화의 영향을 적게 받으며, 움직이는 객체의 검출 성능이 더욱 우수하였다. 또한 단일 객체 및 다수의 객체가 존재하는 환경에서 추적 객체가 유사한 색상 객체와 겹치는 경우, 추적 객체의 영역 절반 이상이 가려지는 경우에도 지속적으로 추적하는 결과를 얻을 수 있었다. 2개의 비디오 영상을 사용한 실험결과는 평균 중첩율 85.9%, 추적률 96.3%의 성능을 보여준다.

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.

객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법 (Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System)

  • 유홍연;홍성훈
    • 한국멀티미디어학회논문지
    • /
    • 제9권5호
    • /
    • pp.529-541
    • /
    • 2006
  • 본 논문에서는 객체기반 비디오 부호화 또는 멀티미디어 편집을 위한 반지동 비디오 객체 분할방식을 제안한다. 반자동 객체분할은 사용자 지원에 의한 분할 방식으로, 비디오 시퀀스의 초기 프레임에서 사용자가 관심객체의 경계를 표시하고 이후의 영상 프레임의 객체를 배경으로부터 연속적으로 분리해 낸다. 제안된 방식은 부분적으로 사용자 조력에 의한 프레임내 분할과 완전 자동에 의한 프레임간 분할 처리과정으로 구성되는데, 영상 전체에 대해 연산을 수행하는 기존 방식과는 달리 객체 경계가 존재하는 영상영역 부분에서만 연산을 수행한다. 프레임내 분할은 사용자가 관심객체의 경계를 지정하고, 이 경계 주위 화소들의 유사성을 이용한 후처리에 의해 정확한 초기 객체를 구한다. 프레임간 분할에서는 이전 프레임에서 추출한 객체의 경계 정보에 근거하여 시간적 유사성을 구한 후 경계와 영역 추적에 의해 연속적으로 동영상 객체를 추출한다. 실험결과로부터 제안된 방식은 비디오 편집, 객체기반 비디오 압축 및 인덱싱 등의 멀미디어 응용에 사용 가능할 정도로 안정되고 정확한 객체추출을 수행함을 확인하였다. 이 결과를 바탕으로 다수의 편리한 기능을 포함한 비디오 편집시스템을 개발하였다.

  • PDF

Memory Propagation-based Target-aware Segmentation Tracker with Adaptive Mask-attention Decision Network

  • Huanlong Zhang;Weiqiang Fu;Bin Zhou;Keyan Zhou;Xiangbo Yang;Shanfeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2605-2625
    • /
    • 2024
  • Siamese-based segmentation and tracking algorithms improve accuracy and stability for video object segmentation and tracking tasks simultaneously. Although effective, variability in target appearance and background clutter can still affect segmentation accuracy and further influence the performance of tracking. In this paper, we present a memory propagation-based target-aware and mask-attention decision network for robust object segmentation and tracking. Firstly, a mask propagation-based attention module (MPAM) is constructed to explore the inherent correlation among image frames, which can mine mask information of the historical frames. By retrieving a memory bank (MB) that stores features and binary masks of historical frames, target attention maps are generated to highlight the target region on backbone features, thus suppressing the adverse effects of background clutter. Secondly, an attention refinement pathway (ARP) is designed to further refine the segmentation profile in the process of mask generation. A lightweight attention mechanism is introduced to calculate the weight of low-level features, paying more attention to low-level features sensitive to edge detail so as to obtain segmentation results. Finally, a mask fusion mechanism (MFM) is proposed to enhance the accuracy of the mask. By utilizing a mask quality assessment decision network, the corresponding quality scores of the "initial mask" and the "previous mask" can be obtained adaptively, thus achieving the assignment of weights and the fusion of masks. Therefore, the final mask enjoys higher accuracy and stability. Experimental results on multiple benchmarks demonstrate that our algorithm performs outstanding performance in a variety of challenging tracking tasks.

새로운 결합척도를 이용한 동영상 분할 (Video Segmentation Using New Combined Measure)

  • 최재각;이시웅;남재열
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.51-62
    • /
    • 2003
  • 본 논문에서는 분할기반 영상 부호화를 위한 새로운 영상 분할 알고리즘을 제안한다. 제안된 방법은 움직임과 밝기 정보에 기반한 새로운 유사성 척도를 사용한다. 그리고 하나의 분할 단계 내에 밝기와 움직임 정보가 함께 결합된다. 영상 분할은 분수령 알고리즘에 기반한 영역 확장법을 통해 이루처지며, 연속된 프레임에 대한 분할은 분할결과가 시간축으로 일관성을 유지하도록 추적방법을 통해 이루어진다. 모의실험결과, 제안된 방법이 통계적 척도만을 사용한 방법과는 달리, 물체의 경계를 결정하는데 효과적임을 보였다.

Active contour와 Optical flow를 이용한 카메라가 움직이는 환경에서의 이동 물체의 검출과 추적 (A Method of Segmentation and Tracking of a Moving Object in Moving Camera Circumstances using Active Contour Models and Optical Flow)

  • 김완진;장대근;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we propose a new approach for tracking a moving object in moving image sequences using active contour models and optical flow. In our approach object segmentation is achieved by active contours, and object tracking is done by motion estimation based on optical flow. To get more dynamic characteristics, Lagrangian dynamics combined to the active contour models. For the optical flow computation, a method, which is based on Spatiotempo-ral Energy Models, is employed to perform robust tracking under poor environments. A prototype real tracking system has been developed and applied to a contents-based video retrieval systems.

  • PDF

Tracking of Moving Objects Using Morphological Segmentation, Statistical Moments and Hough Transform

  • Ahmad, Muhammad Bilal;Chang, Min-Hyuk;Park, Jong-An
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1377-1381
    • /
    • 2003
  • This paper describes real time object tracking of 3D objects in 2D image sequences. The moving objects are segmented from the image sequence using morphological operations. The moving objects are segmented by the method of differential image followed by the process of morphological dilation. The moving objects are recognized and tracked using statistical moments. The direction of moving objects are determined by the Hough transform. The straight lines in the moving objects are found with the help of Hough transform. The direction of the moving object is calculated from the orientation of the straight lines in the direction of the principal axes of the moving objects. The direction of the moving object and the displacement of the object in the image sequence is used to calculate the velocity of the moving objects. The simulation results of the proposed method are promising on the test images.

  • PDF

고속의 세미오토매틱 비디오객체 추적 알고리즘 (A Fast Semiautomatic Video Object Tracking Algorithm)

  • 이종원;김진상;조원경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.291-294
    • /
    • 2004
  • Semantic video object extraction is important for tracking meaningful objects in video and object-based video coding. We propose a fast semiautomatic video object extraction algorithm which combines a watershed segmentation schemes and chamfer distance transform. Initial object boundaries in the first frame are defined by a human before the tracking, and fast video object tracking can be achieved by tracking only motion-detected regions in a video frame. Experimental results shows that the boundaries of tracking video object arc close to real video object boundaries and the proposed algorithm is promising in terms of speed.

  • PDF

적응적인 물체분리를 이용한 효과적인 공분산 추적기 (Effective Covariance Tracker based on Adaptive Foreground Segmentation in Tracking Window)

  • 이진욱;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.766-770
    • /
    • 2010
  • In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.