• 제목/요약/키워드: Object Search

검색결과 665건 처리시간 0.025초

객체의 움직임을 고려한 탐색영역 설정에 따른 가중치를 공유하는 CNN구조 기반의 객체 추적 (Object Tracking based on Weight Sharing CNN Structure according to Search Area Setting Method Considering Object Movement)

  • 김정욱;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제20권7호
    • /
    • pp.986-993
    • /
    • 2017
  • Object Tracking is a technique for tracking moving objects over time in a video image. Using object tracking technique, many research are conducted such a detecting dangerous situation and recognizing the movement of nearby objects in a smart car. However, it still remains a challenging task such as occlusion, deformation, background clutter, illumination variation, etc. In this paper, we propose a novel deep visual object tracking method that can be operated in robust to many challenging task. For the robust visual object tracking, we proposed a Convolutional Neural Network(CNN) which shares weight of the convolutional layers. Input of the CNN is a three; first frame object image, object image in a previous frame, and current search frame containing the object movement. Also we propose a method to consider the motion of the object when determining the current search area to search for the location of the object. Extensive experimental results on a authorized resource database showed that the proposed method outperformed than the conventional methods.

지능기법을 이용한 영상분활 및 물체추적에 관한 연구 (A Study on Image Segmentation and Tracking based on Intelligent Method)

  • 이민중;황기현;김종윤;진태석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.311-312
    • /
    • 2007
  • This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. Finally we conducted an experiment for the object tracking system based on a pan/tilt structure.

  • PDF

퍼지기법을 이용한 영상분할 및 물체추적에 관한 연구 (A Study on Image Segmentation and Tracking based on Fuzzy Method)

  • 이민중;진태석;황기현
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.368-373
    • /
    • 2007
  • 최근에 지능형 로봇분야에서 주위 카메라를 기반으로 실시간으로 환경인식 및 물체 추적 등 다양한 분야에서 연구가 활발히 진행되고 있다. 환경인식 및 물체 추적은 결국 배경과 관심물체를 분리하는 것이라고 볼 수 있는 데, 차 연산을 이용하여 물체의 움직임만을 배경으로 분리하는 방법과 물체인식을 통해 배경으로부터 분리하여 추적하는 방법에 대한 연구가 지속적으로 이루어지고 있다. 본 논문에서는 배경과 물체 사이에서 변화하는 색상의 변화를 퍼지기법을 이용하여 물체를 배경과 분리하여 실시간으로 물체를 추적하고자 한다. 실시간 물체 추적을 위해 전체영상에 대한 전역적 탐색을 통해 여러 후보 물체 중 관심물체를 배경에서 추출 후, 추출된 물체의 크기에 따른 지역탐색을 통하여 물체를 추적하는 방법이다. 그리고 본 논문에서는 ARM 프로세서를 이용한 카메라시스템을 제작하여 실시간으로 영상분활을 실험하였다.

칼만 필터와 가변적 탐색 윈도우 기법을 적용한 강인한 이동 물체 추적 알고리즘 (Robust Tracking Algorithm for Moving Object using Kalman Filter and Variable Search Window Technique)

  • 김영군;현병용;조영완;서기성
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.673-679
    • /
    • 2012
  • This paper introduces robust tracking algorithm for fast and erratic moving object. CAMSHIFT algorithm has less computation and efficient performance for object tracking. However, the method fails to track a object if it moves out of search window by fast velocity and/or large movement. The size of the search window in CAMSHIFT algorithm should be selected manually also. To solve these problems, we propose an efficient prediction technique for fast movement of object using Kalman Filter with automatic initial setting and variable configuration technique for search window. The proposed method is compared to the traditional CAMSHIFT algorithm for searching and tracking performance of objects on test image frames.

CAM과 Selective Search를 이용한 확장된 객체 지역화 학습데이터 생성 및 이의 재학습을 통한 WSOL 성능 개선 (Expanded Object Localization Learning Data Generation Using CAM and Selective Search and Its Retraining to Improve WSOL Performance)

  • 고수연;최영우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.349-358
    • /
    • 2021
  • 최근 CAM[1]을 이용해서 이미지의 객체에 대한 주의 영역 또는 지역화(Localization) 영역을 찾는 방법이 WSOL의 연구로서 다양하게 수행되고 있다. CAM을 이용한 객체의 히트(Heat) 맵에서 주의 영역 추출은 객체의 특징이 가장 많이 모여 있는 영역만을 주로 집중해서 객체의 전체적인 영역을 찾지 못하는 단점이 있다. 여기서는 이를 개선하기 위해서 먼저 CAM과 Selective Search[6]를 함께 이용하여 CAM 히트맵의 주의 영역을 확장하고, 확장된 영역에 가우시안 스무딩을 적용하여 재학습 데이터를 만든 후, 이를 학습하여 객체의 주의 영역이 확장되는 방법을 제안한다. 제안 방법은 단 한 번의 재학습만이 필요하며, 학습 후 지역화를 수행할 때는 Selective Search를 실행하지 않기 때문에 처리 시간이 대폭 줄어든다. 실험에서 기존 CAM의 히트맵들과 비교했을 때 핵심 특징 영역으로부터 주의 영역이 확장되고, 확장된 주의 영역 바운딩 박스에 대한 Ground Truth와의 IOU 계산에서 기존 CAM보다 약 58%가 개선되었다.

숨은 객체 식별을 위한 향상된 공간객체 탐색기법 (An Advanced Scheme for Searching Spatial Objects and Identifying Hidden Objects)

  • 김종완;조양현
    • 한국정보통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1518-1524
    • /
    • 2014
  • 본 논문은 주변탐색(Surrounder Search: SuSe)이라는 새로운 공간질의 방법을 제안한다. 이 기법은 현재 사용자의 위치를 중심으로 주변에서 가까운 관심영역의 공간객체를 탐색하는 것이다. 사용자 중심의 주변탐색은 증강현실과 같이 사용자가 관심 있어 하는 공간객체 중 가까운 것을 찾기 때문에 기존의 공간질의와 구별된다. 기존 기법은 질의점과 객체 사이의 최단거리(MINDIST)를 기준으로 주변을 탐색하지만 제안 기법에서는 객체들 사이에 숨어있지만 관심의 대상인 숨은 객체를 식별하기 위해서 각도(Angle)를 함께 고려하여 탐색한다. 제안 기법의 특징은 기존기법이 거리만을 사용하여 가까운 객체를 탐색한 것과 달리 거리는 멀지만 숨은 객체까지도 찾아냄으로써 사용자의 선호도를 더 세밀하게 반영한다. 실험결과에서 제안기법인 SuSe는 최근접 이웃 탐색기법인 NN(Nearest Neighbor)과 비교하여 보다 정밀한 공간객체 탐색이 가능하며 향상된 탐색성능을 타나낸다.

Image Processing-based Object Recognition Approach for Automatic Operation of Cranes

  • Zhou, Ying;Guo, Hongling;Ma, Ling;Zhang, Zhitian
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.399-408
    • /
    • 2020
  • The construction industry is suffering from aging workers, frequent accidents, as well as low productivity. With the rapid development of information technologies in recent years, automatic construction, especially automatic cranes, is regarded as a promising solution for the above problems and attracting more and more attention. However, in practice, limited by the complexity and dynamics of construction environment, manual inspection which is time-consuming and error-prone is still the only way to recognize the search object for the operation of crane. To solve this problem, an image-processing-based automated object recognition approach is proposed in this paper, which is a fusion of Convolutional-Neutral-Network (CNN)-based and traditional object detections. The search object is firstly extracted from the background by the trained Faster R-CNN. And then through a series of image processing including Canny, Hough and Endpoints clustering analysis, the vertices of the search object can be determined to locate it in 3D space uniquely. Finally, the features (e.g., centroid coordinate, size, and color) of the search object are extracted for further recognition. The approach presented in this paper was implemented in OpenCV, and the prototype was written in Microsoft Visual C++. This proposed approach shows great potential for the automatic operation of crane. Further researches and more extensive field experiments will follow in the future.

  • PDF

이동물체의 변위 예측을 위한 시간솎음 탐색 방향 알고리즘 (Decimation-in-time Search Direction Algorithm for Displacement Prediction of Moving Object)

  • 임강모;이주신
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.338-347
    • /
    • 2005
  • 본 논문에서는 이동물체의 변위 예측을 위한 시간솎음 탐색 방향 알고리즘 제안하여 고속이동물체의 추적과 속도 측정을 하였다. 제안된 알고리즘은 이동물체의 이동 방향을 예측하기 위하여 초기 방향은 시간적으로 연속하는 과거 두 프레임에서 이동물체를 검출하고 이동 각도와 이동 거리를 구하여 초기화하였다. 현재 프레임에서 이동물체의 이동 방향은 시간솎음 탐색 방향 마스크를 적용하여 이동물체의 이동 방향을 구하였다. 시간솎음 탐색 방향 마스크는 연속 프레임에서 프레임을 시간 솎음하여 이동물체를 검출하고, 이동물체의 진행방향의 예측은 8 방향 중에서 이동물체의 이동 각도를 구하여 탐색 마스크를 결정하고, 탐색 마스크에 의해 이동물체의 이동 방향을 예측하였다. 제안한 알고리즘의 타당성을 입증하기 위하여 고속으로 주행 중인 자동차의 추적과 속도를 측정하고, 성능을 평가하기 위하여 전역탐색기법과 제안된 방법을 비교 평가하였다. 그 결과, 제안된 방법에서는 이동물체 변위 탐색 횟수가 평균 91.8$\%$ 감소하였고, 추적 처리 시간은 평균 32.1ms 임을 보임으로서 이동물체 추적을 실시간적으로 실행할 수 있음을 보였다.

순환검색공간에서 K-최근접객체 쌍을 찾는 알고리즘에 관한 연구 (Algorithm for Finding K-Nearest Object Pairs in Circular Search Spaces)

  • 선휘준;김홍기
    • Spatial Information Research
    • /
    • 제20권2호
    • /
    • pp.165-172
    • /
    • 2012
  • 최근의 검색시스템에서는 두 객체집합에 대하여 가장 근접해 있는 K개의 객체 쌍을 찾는 질의가 자주 발생한다. 이러한 K개의 최대근접 객체 쌍을 찾는 질의를 효율적으로 처리하기 위해서는 객체의 순환적 위치속성이 고려되어야 한다. 본 논문은 순환도메인을 갖는 검색공간에서 서로 간에 가장 근접해 있는 K개의 객체쌍을 찾는 최적의 알고리즘을 제안하고 그 성능을 실험을 통하여 보인다. 제안한 알고리즘은 객체의 순환적 위치속성이 반영된 순환검색거리를 이용하여 K개의 최대 근접객체 쌍을 찾는 비용을 최적화한다.

CAM shift와 8방향 탐색 윈도우를 이용한 객체 추적 (Object Tracking Using CAM shift with 8-way Search Window)

  • 김남곤;이금분;조범준
    • 한국정보통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.636-644
    • /
    • 2015
  • 이 논문에서는 CAM shift알고리즘과 8방향 탐색 위도우를 결합하여 객체의 추적 성능을 향상하는 방법과 추적에 이용되는 프레임의 수를 줄여 연산을 줄이는 방법을 제안한다. CAM shift는 대표적인 색상을 이용한 추적 방법이나 빠른 속도로 이동하는 물체를 추적하기 어려운 단점이 있다. 이를 해결하기 위해 추적 대상을 놓쳐버린 시점에서 마지막으로 추적에 성공한 시점의 정보를 이용하여 8방향 탐색을 실시하여 객체를 찾아 낸 후 CAM shift의 탐색 윈도우를 이동시켜 기존의 CAM shift로는 추적이 불가능한 고속 이동 물체에 대해서도 보다 정확한 추적이 가능하게 되었다. 또한 하드웨어의 발달로 초당 생산되어지는 프레임의 수가 증가하여 불필요한 연산이 증가하게 되었고, 이를 줄이기 위해 추적에 이용되는 프레임의 수를 줄여 연산을 줄여 이 전보다 효율을 높일 수 있었다.