본 논문에서는 실제 도로환경의 신호등 및 속도표지판 영역 검출 및 인식 방법을 제안하였다. 밝기정보 및 HIS 컬러모델에기반한 색상정보를 이용하여 신호등을 인식하였다. 또한 HSI 컬러정보로부터 적색강도를 추정함으로써 속도 표지판을 검출하였다. 표지판의 경사여부를 판단하여 시계방향, 반시계방향으로 각각 표지판을 회전시켜 기울기를 보정한 후 인식을 행함으로써 인식률을 제고하였다. 도로환경의 동영상을 대상으로 인식을 행한 결과 신호등과 속도표지판이 혼합된 영상에서도 매우 강건한 인식 결과를 보인다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.212-220
/
2024
A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.
본 논문에서는 자동물체 추적 시스템의 효율성을 높이기 위해 스테레오 영상을 이용한 물체 추적 시스템을 제안하였다. 기존의 물체 추적 시스템에서 사용한 방법들은 최적의 특성을 지니고 있지만, 많은 계산량을 요구하는 단점이 있다. 또한 단안에 의한 영상의 경우 물체의 다양한 변화에 대한 예측과 추적이 어렵다. 따라서 본 논문에서는 양안에 의해 얻어진 스테레오 영상에 변이(translation)와 회전(rotation)에서의 예측이 어려운 단점을 보완한 블록 정합 알고리즘을 적용함으로써 실시간 물체의 변화의 추적 능력을 지니면서도 그 계산량을 줄일 수 있는 추적 방법을 제시하였다. 실험을 통하여 회전(25개)과 전이(28개), 그리고 회전과 전이의 혼합(50개)된 영상에서 각각 88%, 89%, 88%의 인식률을 얻었으며, 평균 88.3%의 인식률을 얻음으로써 본 연구의 유용성을 입증하였다.
스테레오 정합은 스테레오 시각 분야에서 가장 활발히 연구되는 분야이다. 본 논문에서는 물체의 위치 인식을 위한 유전 알고리즘을 이용한 스테레오 정합을 제안한다. 정합 환경을 최적화 문제로 간주하고 진화 전략을 이용하여 최적해를 탐색한다. 따라서, 유전 연산자는 스테레오 정합에 맞게 설계하였고 개체는 변위집단을 대표한다. 영상의 수평화소라인을 염색체로 간주하였다. 비용함수는 스테레오 정합에서 사용하는 일반적인 제약조건들의 조합이다. 비용함수가 명암도, 유사도, 변위 평활성으로 구성되었기 때문에 정합을 시도할 때 매 세대마다 이 모든 요소들을 한번에 다룬다. 염색체를 정의하기 위해 LoG연산자로 경계선을 추출하였으며 실험을 통하여 제안한 방법을 검증하였다.
의료 영상처리 분야에서의 일반적인 객체 인식 방법은 픽셀들의 밝기 정보, 형태 정보, 패턴 정보 등 다양한 컴퓨팅 처리 방법으로 수행되어 진다. 그러나 컴퓨팅 방법에 사용되는 다양한 정보들이 의미가 없을 경우 객체인식에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 의료 영상에서의 물리적인 이론에 기반한 영상처리 방법을 전처리에 활용하고자 한다. 제안된 방법은 대비 개선 작업을 주된 목적으로 하는 SWI(Susceptibility Weighted Imaging) 처리를 통해 의미 있는 전처리 작업을 수행하고, 이에 대한 결과를 텍스처 분석을 통해 MR 뇌 영상의 회백질을 효과적으로 검출하는 과정으로 구성된다. 실험결과 제안 방법은 평균 영역차이가 5.2%로 기존의 대표적인 영역분할 방법에 비해 보다 효율적임을 증명하였다.
영상의 세부 분류에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 방법 중 영상처리를 이용한 방법과 딥러닝을 이용한 방법을 비교하는 것을 목표로 한다. 본 논문에서 영상처리를 이용한 방법으로 객체 분리를 위해 Grab-cut 알고리즘을 사용하고, 영상 인코딩을 위해 Fisher Vector를 사용한 방법을 제안한다. 다른 방법으로는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 각각의 방법에 대해 37종의 애완동물 이미지, 총 7,390장에 대해 실험하여 그 효과를 검증 및 비교하였다.
최근 비전분야에 소개된 Mask R-CNN은 객체 인스턴스 세분화를위한 개념적으로 간단하고 유연하며 일반적인 프레임 워크를 제시한다. 이 논문에서는 열적외선 카메라로부터 획득한 열감지영상에서 발열체인 인스턴스에 대해 발열부위의 세그멘테이션 마스크를 생성하는 동시에 이미지 내의 오브젝트 발열부분을 효율적으로 탐색하는 알고리즘을 제안한다. Mask R-CNN 기법은 바운딩 박스 인식을 위해 기존 브랜치와 병렬로 객체 마스크를 예측하기 위한 브랜치를 추가함으로써 Faster R-CNN을 확장한 알고리즘이다. Mask R-CNN은 훈련이 간단하고 빠르게 실행하는 고속 R-CNN에 추가된다. 더욱이, Mask R-CNN은 다른 작업으로 일반화하기 용이하다. 본 연구에서는 이 R-CNN기반 적외선 영상 검출알고리즘을 제안하여 RGB영상에서 구별할 수 없는 발열체를 탐지하였다. 실험결과 Mask R-CNN에서 변별하지 못하는 발열객체를 성공적으로 검출하였다.
본 논문은 골프 그린에서 홀 컵을 인식하는 인공 지능 모델의 개발에 관한 연구이다. 그린에서 홀 컵의 인지을 위하여 CNN기반 물체 탐지 알고리즘을 사용하였다. 또한 물체 탐지 알고리즘의 모델을 생성하기 위하여 애플사의 CreateML을 사용하였다. 본 논문은 CreateML의 요구에 맞도록 120개의 학습 이미지 및 주석 데이터로 JSON 파일을 만들었다. 또한 정확한 학습을 위하여 학습 데이터에 데이터 증폭 알고리즘을 사용하여 288개의 학습 데이터로 증폭하였고, 이를 사용하여 학습하였다. CreateML에서 요구하는 Iterations, Batch size, Grid size를 변화시키면서 모델의 성능을 높이는 파라미터 값을 찾았다. 개발된 모델을 적용하여 프로토타입 앱을 개발하였고, 이 프로토타입을 이용하여 실제 골프장 그린에서 홀 컵 인지에 대한 성능을 측정하였다. 측정 결과 일반적인 골퍼의 퍼팅 거리인 10m이내에서 홀 컵을 정확히 인지함을 알 수 있었다.
CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.
에지는 영상에 포함된 물체의 크기, 방향, 위치 등을 쉽게 획득할 수 있는 특징 정보이며, 에지 검출은 물체 검출, 물체 인식 등의 여러 영상 처리 응용 분야에서 전처리 과정으로 활용되고 있다. 기존의 에지 검출 방법에는 Sobel, Prewitt, Roberts 에지 검출 방법 등이 있다. 이러한 기존의 에지 검출 방법들은 구현이 간단하며, 고정 가중치 마스크를 적용하므로 에지 검출 특성이 다소 미흡하다. 따라서 기존의 에지 검출 방법들의 문제점을 보완하기 위하여, 본 논문에서는 국부 마스크 내의 평균 및 표준편차에 따라 가중치를 적용한 후 에지를 검출하는 알고리즘을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.