• 제목/요약/키워드: Object Recognition Algorithm

검색결과 517건 처리시간 0.025초

색상분할 및 객체 특징정보의 계층적 적용에 의한 신호등 및 속도 표지판 인식 (Traffic Light and Speed Sign Recognition by using Hierarchical Application of Color Segmentation and Object Feature Information)

  • 이강호;방민영;이규원
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.207-214
    • /
    • 2010
  • 본 논문에서는 실제 도로환경의 신호등 및 속도표지판 영역 검출 및 인식 방법을 제안하였다. 밝기정보 및 HIS 컬러모델에기반한 색상정보를 이용하여 신호등을 인식하였다. 또한 HSI 컬러정보로부터 적색강도를 추정함으로써 속도 표지판을 검출하였다. 표지판의 경사여부를 판단하여 시계방향, 반시계방향으로 각각 표지판을 회전시켜 기울기를 보정한 후 인식을 행함으로써 인식률을 제고하였다. 도로환경의 동영상을 대상으로 인식을 행한 결과 신호등과 속도표지판이 혼합된 영상에서도 매우 강건한 인식 결과를 보인다.

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

스테레오 영상을 이용한 물체 추적 방법 (An Object Tracking Method using Stereo Images)

  • 이학찬;박장한;남궁련;남궁재찬
    • 대한전자공학회논문지SP
    • /
    • 제39권5호
    • /
    • pp.522-534
    • /
    • 2002
  • 본 논문에서는 자동물체 추적 시스템의 효율성을 높이기 위해 스테레오 영상을 이용한 물체 추적 시스템을 제안하였다. 기존의 물체 추적 시스템에서 사용한 방법들은 최적의 특성을 지니고 있지만, 많은 계산량을 요구하는 단점이 있다. 또한 단안에 의한 영상의 경우 물체의 다양한 변화에 대한 예측과 추적이 어렵다. 따라서 본 논문에서는 양안에 의해 얻어진 스테레오 영상에 변이(translation)와 회전(rotation)에서의 예측이 어려운 단점을 보완한 블록 정합 알고리즘을 적용함으로써 실시간 물체의 변화의 추적 능력을 지니면서도 그 계산량을 줄일 수 있는 추적 방법을 제시하였다. 실험을 통하여 회전(25개)과 전이(28개), 그리고 회전과 전이의 혼합(50개)된 영상에서 각각 88%, 89%, 88%의 인식률을 얻었으며, 평균 88.3%의 인식률을 얻음으로써 본 연구의 유용성을 입증하였다.

물체의 위치 인식을 위한 유전 알고리즘과 스테레오 정합에 관한 연구 (A Study on Genetic Algorithm and Stereo Matching for Object Depth Recognition)

  • 홍석근;조석제
    • 한국항해항만학회지
    • /
    • 제32권5호
    • /
    • pp.355-361
    • /
    • 2008
  • 스테레오 정합은 스테레오 시각 분야에서 가장 활발히 연구되는 분야이다. 본 논문에서는 물체의 위치 인식을 위한 유전 알고리즘을 이용한 스테레오 정합을 제안한다. 정합 환경을 최적화 문제로 간주하고 진화 전략을 이용하여 최적해를 탐색한다. 따라서, 유전 연산자는 스테레오 정합에 맞게 설계하였고 개체는 변위집단을 대표한다. 영상의 수평화소라인을 염색체로 간주하였다. 비용함수는 스테레오 정합에서 사용하는 일반적인 제약조건들의 조합이다. 비용함수가 명암도, 유사도, 변위 평활성으로 구성되었기 때문에 정합을 시도할 때 매 세대마다 이 모든 요소들을 한번에 다룬다. 염색체를 정의하기 위해 LoG연산자로 경계선을 추출하였으며 실험을 통하여 제안한 방법을 검증하였다.

MR 뇌 영상에서 물리기반 영상 개선 작업을 통한 효율적인 회백질 경계 검출 방법 (Effective Gray-white Matter Segmentation Method based on Physical Contrast Enhancement in an MR Brain Images)

  • 은성종;황보택근
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권2호
    • /
    • pp.275-282
    • /
    • 2013
  • 의료 영상처리 분야에서의 일반적인 객체 인식 방법은 픽셀들의 밝기 정보, 형태 정보, 패턴 정보 등 다양한 컴퓨팅 처리 방법으로 수행되어 진다. 그러나 컴퓨팅 방법에 사용되는 다양한 정보들이 의미가 없을 경우 객체인식에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 의료 영상에서의 물리적인 이론에 기반한 영상처리 방법을 전처리에 활용하고자 한다. 제안된 방법은 대비 개선 작업을 주된 목적으로 하는 SWI(Susceptibility Weighted Imaging) 처리를 통해 의미 있는 전처리 작업을 수행하고, 이에 대한 결과를 텍스처 분석을 통해 MR 뇌 영상의 회백질을 효과적으로 검출하는 과정으로 구성된다. 실험결과 제안 방법은 평균 영역차이가 5.2%로 기존의 대표적인 영역분할 방법에 비해 보다 효율적임을 증명하였다.

영상 처리와 CNN을 이용한 애완동물 영상 세부 분류 비교 (Comparison of Fine Grained Classification of Pet Images Using Image Processing and CNN)

  • 김지혜;고정환;권철희
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.175-183
    • /
    • 2021
  • 영상의 세부 분류에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 방법 중 영상처리를 이용한 방법과 딥러닝을 이용한 방법을 비교하는 것을 목표로 한다. 본 논문에서 영상처리를 이용한 방법으로 객체 분리를 위해 Grab-cut 알고리즘을 사용하고, 영상 인코딩을 위해 Fisher Vector를 사용한 방법을 제안한다. 다른 방법으로는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 각각의 방법에 대해 37종의 애완동물 이미지, 총 7,390장에 대해 실험하여 그 효과를 검증 및 비교하였다.

적외선 카메라 영상에서의 마스크 R-CNN기반 발열객체검출 (Object Detection based on Mask R-CNN from Infrared Camera)

  • 송현철;강민식;김태은
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1213-1218
    • /
    • 2018
  • 최근 비전분야에 소개된 Mask R-CNN은 객체 인스턴스 세분화를위한 개념적으로 간단하고 유연하며 일반적인 프레임 워크를 제시한다. 이 논문에서는 열적외선 카메라로부터 획득한 열감지영상에서 발열체인 인스턴스에 대해 발열부위의 세그멘테이션 마스크를 생성하는 동시에 이미지 내의 오브젝트 발열부분을 효율적으로 탐색하는 알고리즘을 제안한다. Mask R-CNN 기법은 바운딩 박스 인식을 위해 기존 브랜치와 병렬로 객체 마스크를 예측하기 위한 브랜치를 추가함으로써 Faster R-CNN을 확장한 알고리즘이다. Mask R-CNN은 훈련이 간단하고 빠르게 실행하는 고속 R-CNN에 추가된다. 더욱이, Mask R-CNN은 다른 작업으로 일반화하기 용이하다. 본 연구에서는 이 R-CNN기반 적외선 영상 검출알고리즘을 제안하여 RGB영상에서 구별할 수 없는 발열체를 탐지하였다. 실험결과 Mask R-CNN에서 변별하지 못하는 발열객체를 성공적으로 검출하였다.

물체 탐지 기술을 사용하여 골프 그린에서 홀 컵 인지 모델 개발 (Development of a Hole Cup Recognition Model on Golf Green Using Object Detection Technology)

  • 이재문;황기태;정인환
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.15-21
    • /
    • 2023
  • 본 논문은 골프 그린에서 홀 컵을 인식하는 인공 지능 모델의 개발에 관한 연구이다. 그린에서 홀 컵의 인지을 위하여 CNN기반 물체 탐지 알고리즘을 사용하였다. 또한 물체 탐지 알고리즘의 모델을 생성하기 위하여 애플사의 CreateML을 사용하였다. 본 논문은 CreateML의 요구에 맞도록 120개의 학습 이미지 및 주석 데이터로 JSON 파일을 만들었다. 또한 정확한 학습을 위하여 학습 데이터에 데이터 증폭 알고리즘을 사용하여 288개의 학습 데이터로 증폭하였고, 이를 사용하여 학습하였다. CreateML에서 요구하는 Iterations, Batch size, Grid size를 변화시키면서 모델의 성능을 높이는 파라미터 값을 찾았다. 개발된 모델을 적용하여 프로토타입 앱을 개발하였고, 이 프로토타입을 이용하여 실제 골프장 그린에서 홀 컵 인지에 대한 성능을 측정하였다. 측정 결과 일반적인 골퍼의 퍼팅 거리인 10m이내에서 홀 컵을 정확히 인지함을 알 수 있었다.

고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구 (Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image)

  • 이협건;김영운
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.41-49
    • /
    • 2023
  • CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.

국부 마스크의 표준편차를 이용한 에지 검출 알고리즘에 관한 연구 (A Study on Edge Detection Algorithm using Standard Deviation of Local Mask)

  • 이창영;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.328-330
    • /
    • 2015
  • 에지는 영상에 포함된 물체의 크기, 방향, 위치 등을 쉽게 획득할 수 있는 특징 정보이며, 에지 검출은 물체 검출, 물체 인식 등의 여러 영상 처리 응용 분야에서 전처리 과정으로 활용되고 있다. 기존의 에지 검출 방법에는 Sobel, Prewitt, Roberts 에지 검출 방법 등이 있다. 이러한 기존의 에지 검출 방법들은 구현이 간단하며, 고정 가중치 마스크를 적용하므로 에지 검출 특성이 다소 미흡하다. 따라서 기존의 에지 검출 방법들의 문제점을 보완하기 위하여, 본 논문에서는 국부 마스크 내의 평균 및 표준편차에 따라 가중치를 적용한 후 에지를 검출하는 알고리즘을 제안하였다.

  • PDF