• 제목/요약/키워드: Object Localization

검색결과 175건 처리시간 0.027초

이동로봇의 물체인식 기반 전역적 자기위치 추정 (Object Recognition-based Global Localization for Mobile Robots)

  • 박순용;박민용;박성기
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Implementation of Indoor Localization System

  • Ryu, Dong-Wan;Kim, Sun-Hyung;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제8권3호
    • /
    • pp.54-60
    • /
    • 2019
  • In this paper, a localization system for indoor objects is proposed. The proposed system consists of Beacons, LED Cells, Main Cell Controller (MCC), and Display. A Beacon is attached at each indoor object, and each LED cell has Beacon Scanner and VLC Transmitter. The Visual Light Communications (VLC) and Power Line Communications (PLC) methods are used to communicate the signals for localization of indoor objects. And the proposed system is designed, and implemented as a prototype. To certify that our propose d system can exactly localize a given indoor object, we take test for the implemented system as a p rototype. Here the location of the given indoor object is known. Test is done in two ways. The first is to check the operation of the detail of the system, and the second is the position recognition of i ndoor object. The second is the test of the implemented system to correctly detect the location of the indoor object with Beacon, while the object with Beacon is moved from location C to A. The experimental result shows that the system is exactly detect the moving locations. The system has the advantages of using previously installed power lines, and it does not need to use LAN lines or optical cables. The proposed system is usefully applied to indoor object localization area.

CAM과 Selective Search를 이용한 확장된 객체 지역화 학습데이터 생성 및 이의 재학습을 통한 WSOL 성능 개선 (Expanded Object Localization Learning Data Generation Using CAM and Selective Search and Its Retraining to Improve WSOL Performance)

  • 고수연;최영우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.349-358
    • /
    • 2021
  • 최근 CAM[1]을 이용해서 이미지의 객체에 대한 주의 영역 또는 지역화(Localization) 영역을 찾는 방법이 WSOL의 연구로서 다양하게 수행되고 있다. CAM을 이용한 객체의 히트(Heat) 맵에서 주의 영역 추출은 객체의 특징이 가장 많이 모여 있는 영역만을 주로 집중해서 객체의 전체적인 영역을 찾지 못하는 단점이 있다. 여기서는 이를 개선하기 위해서 먼저 CAM과 Selective Search[6]를 함께 이용하여 CAM 히트맵의 주의 영역을 확장하고, 확장된 영역에 가우시안 스무딩을 적용하여 재학습 데이터를 만든 후, 이를 학습하여 객체의 주의 영역이 확장되는 방법을 제안한다. 제안 방법은 단 한 번의 재학습만이 필요하며, 학습 후 지역화를 수행할 때는 Selective Search를 실행하지 않기 때문에 처리 시간이 대폭 줄어든다. 실험에서 기존 CAM의 히트맵들과 비교했을 때 핵심 특징 영역으로부터 주의 영역이 확장되고, 확장된 주의 영역 바운딩 박스에 대한 Ground Truth와의 IOU 계산에서 기존 CAM보다 약 58%가 개선되었다.

이미지 인식을 위한 객체 식별 및 지역화 (Object Identification and Localization for Image Recognition)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제11권4호
    • /
    • pp.49-55
    • /
    • 2012
  • This paper proposes an efficient method of object identification and localization for image recognition. The new proposed algorithm utilizes correlogram back-projection in the YCbCr chromaticity components to handle the problem of sub-region querying. Utilizing similar spatial color information enables users to detect and locate primary location and candidate regions accurately, without the need for additional information about the number of objects. Comparing this proposed algorithm to existing methods, experimental results show that improvement of 21% was observed. These results reveal that color correlogram is markedly more effective than color histogram for this task. Main contribution of this paper is that a different way of treating color spaces and a histogram measure, which involves information on spatial color, are applied in object localization. This approach opens up new opportunities for object detection for the use in the area of interactive image and 2-D based augmented reality.

스마트폰을 이용한 물체의 3차원 위치 추정 기법 (A Three Dimensional Object Localization Scheme using A Smartphone)

  • 권오흠;정명환;송하주
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1200-1207
    • /
    • 2017
  • Sensors in a smartphone can be used to measure various physical quantities. In this paper, we propose an object localization scheme in a three dimenstional using a smart phone. The proposed scheme estimates the location of an object by observing it from several different points. The direction to the target object and the locations of the observation points are collected at each observation point using the location sensor and the orientation sensor in the smartphone. Based on these observations, the proposed scheme derives three dimensional line of sight vectors and estimates the location of the target object that minimizes the estimation error. We implemented the proposed scheme on an Android smartphone and tested its performance by estimating the height of a building and characteristics of the proposed approach.

칼라 상관관계 역투영법을 적용한 효율적인 객체 지역화 기법 (Efficient Object Localization using Color Correlation Back-projection)

  • 이용환;조한진;이준환
    • 디지털융복합연구
    • /
    • 제14권5호
    • /
    • pp.263-271
    • /
    • 2016
  • 이미지 내에서 객체를 검출하고 해당 위치를 추출하는 지역화 기법은 컴퓨터 비전에서 많이 활용되는 기술이다. 기존 연구들은 하나의 객체를 대상으로 위치 검출을 수행하지만, 실제 사진에서는 다수의 유사 객체를 포함하는 경우가 많기 때문에, 활용에 한계가 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 이미지 인식을 위해 객체 지역화의 새로운 알고리즘을 제안한다. 제안 알고리즘은 YCbCr 색채 성분에서 코렐로그램 역투영 기법을 활용하여 객체 지역화 문제를 해결한다. 제안 알고리즘에서는 질의 이미지의 객체가 포함되는 이미지의 위치를 검출할 수 있으며, 다수의 유사 객체가 존재할 경우 포함되는 객체 개수 정보 없이도 유사 후보 객체의 영역과 위치를 검출할 수 있다. 제안 알고리즘의 성능을 평가할 실험 결과, 기존에 연구된 방법에 비해, 21%의 성능 향상을 보였다. 이러한 결과를 통해, 색상 코렐로그램이 히스토그램 기법보다 성능적 우위를 보였다. 본 논문의 주요 공헌은 색 공간과 공간-색상 정보를 통해 객체 지역화 문제를 해결할 수 있는 또다른 기술을 제시한 것으로 학문적 기여를 검증하였다.

수염 촉각 센서를 이용한 물체 위치 판별 그리고 이에 따른 로봇의 상대적 위치 제어 방법 (Tactile localization Using Whisker Tactile Sensors)

  • 김대은;랄프몰러
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1061-1062
    • /
    • 2008
  • Rodents demonstrate an outstanding capability for tactile perceptions using their whiskers. The mechanoreceptors in the whisker follicles are responsive to the deflections or vibrations of the whisker beams. It is believed that the sensor processing can determine the location of an object in touch, that is, the angular position and direction of the object. We designed artificial whiskers modelling the real whiskers and tested tactile localization. The robotic system needs to adjust its position against an object to help the shape recognition. We show a robotic adjustment of position based on tactile localization. The behaviour uses deflection curves of the whisker sensors for every sweep of whiskers and estimates the location of a target object.

  • PDF

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발 (Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section)

  • 서호태;박성렬;이경수
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.