• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.034 seconds

Wavelet based Feature Extraction of Human face

  • Kim, Yoon-Ho;Lee, Myung-Kil;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.349-355
    • /
    • 2001
  • Human have a notable ability to recognize faces, which is one of the most common visual feature in our environment. In regarding face pattern, just like other natural object, a geometrical interpretation of face is difficult to achieve. In this paper, we present wavelet based approach to extract the face features. Proposed approach is similar to the feature based scheme, where the feature is derived from the intensity data without detecting any knowledge of the significant feature. Topological graphs are involved to represent some relations between facial features. In our experiments, proposed approach is less sensitive to the intensity variation.

  • PDF

Real-time 3D Feature Extraction Combined with 3D Reconstruction (3차원 물체 재구성 과정이 통합된 실시간 3차원 특징값 추출 방법)

  • Hong, Kwang-Jin;Lee, Chul-Han;Jung, Kee-Chul;Oh, Kyoung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.789-799
    • /
    • 2008
  • For the communication between human and computer in an interactive computing environment, the gesture recognition has been studied vigorously. The algorithms which use the 2D features for the feature extraction and the feature comparison are faster, but there are some environmental limitations for the accurate recognition. The algorithms which use the 2.5D features provide higher accuracy than 2D features, but these are influenced by rotation of objects. And the algorithms which use the 3D features are slow for the recognition, because these algorithms need the 3d object reconstruction as the preprocessing for the feature extraction. In this paper, we propose a method to extract the 3D features combined with the 3D object reconstruction in real-time. This method generates three kinds of 3D projection maps using the modified GPU-based visual hull generation algorithm. This process only executes data generation parts only for the gesture recognition and calculates the Hu-moment which is corresponding to each projection map. In the section of experimental results, we compare the computational time of the proposed method with the previous methods. And the result shows that the proposed method can apply to real time gesture recognition environment.

Natural Object Recognition for Augmented Reality Applications (증강현실 응용을 위한 자연 물체 인식)

  • Anjan, Kumar Paul;Mohammad, Khairul Islam;Min, Jae-Hong;Kim, Young-Bum;Baek, Joong-Hwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Markerless augmented reality system must have the capability to recognize and match natural objects both in indoor and outdoor environment. In this paper, a novel approach is proposed for extracting features and recognizing natural objects using visual descriptors and codebooks. Since the augmented reality applications are sensitive to speed of operation and real time performance, our work mainly focused on recognition of multi-class natural objects and reduce the computing time for classification and feature extraction. SIFT(scale invariant feature transforms) and SURF(speeded up robust feature) are used to extract features from natural objects during training and testing, and their performance is compared. Then we form visual codebook from the high dimensional feature vectors using clustering algorithm and recognize the objects using naive Bayes classifier.

Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature (HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘)

  • 김대일;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • In this paper, we propose an efficient feature extraction and image retrieval algorithm for content-based retrieval method. First, we extract the object using Gaussian edge detector for input image which is key frames of MPEG video and extract the object features that are location feature, distributed dimension feature and invariant moments feature. Next, we extract the characteristic color feature using the proposed HAQ(Histogram Analysis md Quantization) algorithm. Finally, we implement an retrieval of four features in sequence with the proposed matching method for query image which is a shot frame except the key frames of MPEG video. The purpose of this paper is to propose the novel content-based image retrieval algerian which retrieves the key frame in the shot boundary of MPEG video belonging to the scene requested by user. The experimental results show an efficient retrieval for 836 sample images in 10 music videos using the proposed algorithm.

Effective De-blurring Algorithm for the Vibration Blur of the Interlaced Scan Type Digital Camera (인터레이스 스캔 방식 디지털 카메라 떨림 블러에 대한 효과적 제거 알고리즘)

  • Chon, Jae-Choon;Kim, Hyong-Suk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.559-566
    • /
    • 2005
  • An effective do-blurring algorithm is proposed to remove the blur of the even and the odd line images of the interlaced scan type camera. n the object or the camera moves fast while the interlaced scan type digital camera is acquiring images, blur is often created due to the misalignment between two images of even and odd lines. In this paper, the blurred original image is separated into the even and the odd line images of the half size. Two full sized images are generated using interpolation technique based on these two in ages. Again, these images are signed and combined through the processes of feature extraction, matching, sub-pixel matching, outlier removal, and mosaicking. De-blurring simulations about the images of different camera motions have been done.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Multiple Object Tracking Using SIFT and Multi-Lateral Histogram (SIFT와 다중측면히스토그램을 이용한 다중물체추적)

  • Jun, Jung-Soo;Moon, Yong-Ho;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • In multiple object tracking, accurate detection for each of objects that appear sequentially and effective tracking in complicated cases that they are overlapped with each other are very important. In this paper, we propose a multiple object tracking system that has a concrete detection and tracking characteristics by using multi-lateral histogram and SIFT feature extraction algorithm. Especially, by limiting the matching area to object's inside and by utilizing the location informations in the keypoint matching process of SIFT algorithm, we advanced the tracking performance for multiple objects. Based on the experimental results, we found that the proposed tracking system has a robust tracking operation in the complicated environments that multiple objects are frequently overlapped in various of directions.

Target Object Extraction Based on Clustering (클러스터링 기반의 목표물체 분할)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young;Lee, Suk-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.227-228
    • /
    • 2013
  • 본 논문에서는 연속적으로 입력되는 스테레오 입체 영상으로부터 2차원과 3차원의 특징을 결합하여 군집화함으로써 대상 물체를 보다 강건하게 분할하는 기법을 제안한다. 제안된 방법에서는 촬영된 장면의 좌우 영상으로부터 스테레오 정합 알고리즘을 이용해 영상의 각 화소별로 카메라와 물체 사이의 거리를 나타내는 깊이 특징을 추출한다. 그런 다음, 깊이와 색상 특징을 효과적으로 군집화하여 배경에 해당하는 영역을 제외하고, 전경에 해당하는 대상 물체를 감지한다. 실험에서는 제안된 방법을 여러가지 영상에 적용하여 테스트를 해 보았으며, 제안된 방법이 기존의 2차원 기반의 물체 분리 방법에 비해 보다 강건하게 대상물체를 분할함을 확인하였다.

  • PDF

Feature Extraction Techniques from Micro Drill Bits Images (마이크로 드릴 비트 영상에서의 특징 추출 기법)

  • Oh, Se-Jun;Kim, Nak-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.919-920
    • /
    • 2008
  • In this paper, we present early processing techniques for visual inspection of metallic parts. Since metallic surfaces give rise to specular reflections, it is difficult to extract object boundaries using elementary segmentation techniques such as edge detection or binary thresholding. In this paper, we present two techniques for finding object boundaries on micro bit images. First, we explain a technique for detecting blade boundaries using a directional correlation mask. Second, a line and angle extraction technique based on Harris corner detector and Hough transform is described. These techniques have been effective for detecting blade boundaries, and a number of experimental results are presented using real images.

  • PDF

A Study on Method of Automatic Geospatial Feature Extraction through Relative Radiometric Normalization of High-resolution Satellite Images (고해상도 위성영상의 상대방사보정을 통한 자동화 지향 공간객체추출 방안 연구)

  • Lee, Dong-Gook;Lee, Hyun-Jik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.917-927
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport of Korea is developing a CAS 500-1/2 satellite capable of photographing a GSD 0.5 m level image, and is developing a technology to utilize this. Therefore, this study attempted to develop a geospatial feature extraction technique aimed at automation as a technique for utilizing CAS 500-1/2 satellite images. KOMPSAT-3A satellite images that are expected to be most similar to CAS 500-1/2 were used for research and the possibility of automation of geospatial feature extraction was analyzed through relative radiometric normalization. For this purpose, the parameters and thresholds were applied equally to the reference images and relative radiometric normalized images, and the geospatial feature were extracted. The qualitative analysis was conducted on whether the extracted geospatial feature is extracted in a similar form from the reference image and relative radiometric normalized image. It was also intended to analyze the possibility of automation of geospatial feature extraction by quantitative analysis of whether the classification accuracy satisfies the target accuracy of 90% or more set in this study. As a result, it was confirmed that shape of geospatial feature extracted from reference image and relative radiometric normalized image were similar, and the classification accuracy analysis results showed that both satisfies the target accuracy of 90% or more. Therefore, it is believed that automation will be possible when extracting spatial objects through relative radiometric normalization.