In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.
This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.
International Journal of Advanced Culture Technology
/
v.7
no.4
/
pp.229-235
/
2019
Due to the development of video and optical technology today, video equipments are being used in a variety of fields such as identification, security maintenance, and factory automation systems that generate products. In this paper, we investigate an algorithm that effectively recognizes an experimental object in an input image with a partial problem due to the mechanical problem of the input imaging device. The object recognition algorithm proposed in this paper moves and rotates the vertices constituting the outline of the experimental object to the positions of the respective vertices constituting the outline of the DB model. Then, the discordance values between the moved and rotated experimental object and the corresponding DB model are calculated, and the minimum discordance value is selected. This minimum value is the final discordance value between the experimental object and the corresponding DB model, and the DB model with the minimum discordance value is selected as the recognition result for the experimental object. The proposed object recognition method obtains satisfactory recognition results using only partial information of the experimental object.
This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.
Journal of the Korean Society for Precision Engineering
/
v.25
no.2
/
pp.35-42
/
2008
This study introduces a robust feature detector for sonar data from a general fixed-type of sonar ring. The detector is composed of a data association filter and a feature extractor. The data association filter removes false returns provided frequently from sonar sensors, and classifies set of data from various objects and robot positions into a group in which all the data are from the same object. The feature extractor calculates the geometries of the feature for the group. We show the possibility of extracting circle feature as well as a line and a point features. The proposed method was applied to a real home environment with a real robot.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.1
/
pp.9-16
/
2002
This paper proposes a new 3D modeling technique using disparity-motion relationship and feature points. To generate the 3D model from real scene, generally, we need to compute depth of model vertices from the dense correspondence map over whole images. It takes much time and is also very difficult to get accurate depth. To improve such problems, in this paper, we only need to find the correspondence of some feature points to generate a 3D model of object without dense correspondence map. The proposed method consists of three parts, which are the extraction of object, the extraction of feature points, and the hierarchical 3D modeling using classified feature points. It has characteristics of low complexity and is effective to synthesize images with virtual view and to express the smoothness of Plain regions and the sharpness of edges.
This paper explains the hardware structure of SURF(Speeded Up Robust Feature) based feature point extractor and its FPGA verification result. SURF algorithm produces novel scale- and rotation-invariant feature point and descriptor which can be used for object recognition, creation of panorama image, 3D Image restoration. But the feature point extraction processing takes approximately 7,200msec for VGA-resolution in embedded environment using ARM11(667Mhz) processor and 128Mbytes DDR memory, hence its real-time operation is not guaranteed. We analyzed integral image memory access pattern which is a key component of SURF algorithm to reduce memory access and memory usage to operate in c real-time. We assure feature extraction that using a Vertex-5 FPGA gives 60frame/sec of VGA image at 100Mhz.
The Transactions of the Korea Information Processing Society
/
v.1
no.4
/
pp.551-558
/
1994
This paper proposes the algorithm of the feature extraction, making polyline- shape according to extracted points and similarity test on the object represented by contour. The control points which can make approximate curve are extracted as features of the object. Experiments show that this algorithm is a effective method for identification between different shapes.
Kim, WooSuk;Lee, Juseong;An, Ho-Myoung;Kim, Byungcheul
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.2
/
pp.192-197
/
2017
In this paper, image filter optimization method based on common sub-expression elimination is proposed for low-power image feature extraction hardware design. Low power and high performance object recognition hardware is essential for industrial robot which is used for factory automation. However, low area Gaussian gradient filter hardware design is required for object recognition hardware. For the hardware complexity reduction, we adopt the symmetric characteristic of the filter coefficients using the transposed form FIR filter hardware architecture. The proposed hardware architecture can be implemented without degradation of the edge detection data quality since the proposed hardware is implemented with original Gaussian gradient filtering algorithm. The expremental result shows the 50% of multiplier savings compared with previous work.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.