• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.031 seconds

Direct Divergence Approximation between Probability Distributions and Its Applications in Machine Learning

  • Sugiyama, Masashi;Liu, Song;du Plessis, Marthinus Christoffel;Yamanaka, Masao;Yamada, Makoto;Suzuki, Taiji;Kanamori, Takafumi
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.99-111
    • /
    • 2013
  • Approximating a divergence between two probability distributions from their samples is a fundamental challenge in statistics, information theory, and machine learning. A divergence approximator can be used for various purposes, such as two-sample homogeneity testing, change-point detection, and class-balance estimation. Furthermore, an approximator of a divergence between the joint distribution and the product of marginals can be used for independence testing, which has a wide range of applications, including feature selection and extraction, clustering, object matching, independent component analysis, and causal direction estimation. In this paper, we review recent advances in divergence approximation. Our emphasis is that directly approximating the divergence without estimating probability distributions is more sensible than a naive two-step approach of first estimating probability distributions and then approximating the divergence. Furthermore, despite the overwhelming popularity of the Kullback-Leibler divergence as a divergence measure, we argue that alternatives such as the Pearson divergence, the relative Pearson divergence, and the $L^2$-distance are more useful in practice because of their computationally efficient approximability, high numerical stability, and superior robustness against outliers.

A Study on Recognition of Moving Object Crowdedness Based on Ensemble Classifiers in a Sequence (혼합분류기 기반 영상내 움직이는 객체의 혼잡도 인식에 관한 연구)

  • An, Tae-Ki;Ahn, Seong-Je;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.95-104
    • /
    • 2012
  • Pattern recognition using ensemble classifiers is composed of strong classifier which consists of many weak classifiers. In this paper, we used feature extraction to organize strong classifier using static camera sequence. The strong classifier is made of weak classifiers which considers environmental factors. So the strong classifier overcomes environmental effect. Proposed method uses binary foreground image by frame difference method and the boosting is used to train crowdedness model and recognize crowdedness using features. Combination of weak classifiers makes strong ensemble classifier. The classifier could make use of potential features from the environment such as shadow and reflection. We tested the proposed system with road sequence and subway platform sequence which are included in "AVSS 2007" sequence. The result shows good accuracy and efficiency on complex environment.

Door Recognition using Visual Fuzzy System in Indoor Environments (시각 퍼지 시스템을 이용한 실내 문 인식)

  • Yi, Chu-Ho;Lee, Sang-Heon;Jeong, Seung-Do;Suh, Il-Hong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • Door is an important object to understand given environment and it could be used to distinguish with corridors and rooms. Doors are widely used natural landmark in mobile robotics for localization and navigation. However, almost algorithm for door recognition with camera is difficult real-time application because feature extraction and matching have heavy computation complexity. This paper proposes a method to recognize a door in corridor. First, we extract distinguished lines which have high possibility to comprise of door using Hough transformation. Then, we detect candidate of door region by applying previously extracted lines to first-stage visual fuzzy system. Finally, door regions are determined by verifying knob region in candidate of door region suing second-stage visual fuzzy system.

MPEG-7 Texture Descriptor (MPEG-7 질감 기술자)

  • 강호경;정용주;유기원;노용만;김문철;김진웅
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-22
    • /
    • 2000
  • In this paper, we present a texture description method as a standardization of multimedia contents description. Like color, shape, object and camera motion information, texture is one of very important information in the visual part of international standard (MPEG-7) in multimedia contents description. Current MPEG-7 texture descriptor has been designed to fit human visual system. Many psychophysical experiments give evidence that the brain decomposes the spectra into perceptual channels that are bands in spatial frequency. The MPEG-7 texture description method has employed Radon transform that fits with HVS behavior. By taking average energy and energy deviation of HVS channels, the texture descriptor is generated. To test the performance of current texture descriptor, experiments with MPEG-7 Texture data sets of T1 to T7 are performed. Results show that the current MPEG-7 texture descriptor gives better retrieval rate and fast and fast extraction time for texture feature.

  • PDF

A block-based face detection algorithm for the efficient video coding of a videophone (효율적인 화상회의 동영상 압축을 위한 블록기반 얼굴 검출 방식)

  • Kim, Ki-Ju;Bang, Kyoung-Gu;Moon, Jeong-Mee;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1258-1268
    • /
    • 2004
  • We propose a new fast, algorithm which is used for detecting frontal face in the frequency domain based on human skin-color using OCT coefficient of dynamic image compression and skin color information. The region where each pixel has a value of skin-color were extracted from U and V value based on DCT coefficient obtained in the process of Image compression using skin-color map in the Y, U, V color space A morphological filter and labeling method are used to eliminate noise in the resulting image We propose the algorithm to detect fastly human face that estimate the directional feature and variance of luminance block of human skin-color Then Extraction of face was completed adaptively on both background have the object analogous to skin-color and background is simple in the proposed algorithm The performance of face detection algorithm is illustrated by some simulation results earned out on various races We confined that a success rate of 94 % was achieved from the experimental results.

Ontology-based Image Understanding Systems (온톨로지 기반 영상이해 시스템)

  • Lee, In-K.;Seo, Suk-T.;Jeong, Hye-C.;Son, Seo-H.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.328-335
    • /
    • 2007
  • Ontology is represented by the shared concepts and relations among those. Many studies have been actively working on sharing human's knowledge with that of systems by using it. For a typical example, there is the design and implementation of ontology system for image understanding. However conventional studies on ontology-based image understanding have proposed not concrete methods but conceptual idea. In this paper, we propose an ontology-based image understanding system with following four processes: i)knowledge representation of a specific domain by the ontology, ii)feature extraction of objects through image processing and image analysis, iii)image interpretation by object features, and iv)reduction of ambiguity existing in image interpretation by ontology reasoning. We implement an image understanding system based on the proposed processed, and show the effectiveness of the proposed system from experimental results in a specific domain.

The High-Speed Extraction of Interest Region in the Parcel Image of Large Size (대용량 소포영상에서 관심영역 고속추출 방법에 관한 연구)

  • Park, Moon-Sung;Bak, Sang-Eun;Kim, In-Soo;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.691-702
    • /
    • 2004
  • In this paper, we propose a sequence of method which extrats ROIs(Region of Interests) rapidly from the parcel image of large size. In the proposed method, original image is spilt into the small masks, and the meaningful masks, the ROIs, are extracted by two criterions sequentially The first criterion is difference of pixel value between Inner points, and the second is deviation of it. After processing, some informational ROIs-the areas of bar code, characters, label and the outline of object-are acquired. Using diagonal axis of each ROI and the feature of various 2D bar code, the area of 2D bar code can be extracted from the ROIs. From an experiment using above methods, various ROIs are extracted less than 200msec from large-size parcel image, and 2D bar code region is selected by the accuracy of 100%.

A Survey on Deep Learning based Face Recognition for User Authentication (사용자 인증을 위한 딥러닝 기반 얼굴인식 기술 동향)

  • Mun, Hyung-Jin;Kim, Gea-Hee
    • Journal of Industrial Convergence
    • /
    • v.17 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Object recognition distinguish objects which are different from each other. But Face recognition distinguishes Identity of Faces with Similar Patterns. Feature extraction algorithm such as LBP, HOG, Gabor is being replaced with Deep Learning. As the technology that identify individual face with machine learning using Deep Learning Technology is developing, The Face Recognition Technology is being used in various field. In particular, the technology can provide individual and detailed service by being used in various offline environments requiring user identification, such as Smart Mirror. Face Recognition Technology can be developed as the technology that authenticate user easily by device like Smart Mirror and provide service authenticated user. In this paper, we present investigation about Face Recognition among various techniques for user authentication and analysis of Python source case of Face recognition and possibility of various service using Face Recognition Technology.

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.