• Title/Summary/Keyword: Obesity-related genes

검색결과 140건 처리시간 0.027초

Effects of dietary supplementation with Taiwanese tea byproducts and probiotics on growth performance, lipid metabolism, and the immune response in red feather native chickens

  • Chen, L.W.;Chuang, W.Y.;Hsieh, Y.C.;Lin, H.H.;Lin, W.C.;Lin, L.J.;Chang, S.C.;Lee, T.T.
    • Animal Bioscience
    • /
    • 제34권3_spc호
    • /
    • pp.393-404
    • /
    • 2021
  • Objective: This study compared the catechin composition of different tea byproducts and investigated the effects of dietary supplementation with green tea byproducts on the accumulation of abdominal fat, the modulation of lipid metabolism, and the inflammatory response in red feather native chickens. Methods: Bioactive compounds were detected, and in vitro anti-obesity capacity analyzed via 3T3-L1 preadipocytes. In animal experiments, 320 one-day-old red feather native chickens were divided into 4 treatment groups: control, basal diet supplemented with 0.5% Jinxuan byproduct (JBP), basal diet supplemented with 1% JBP, or basal diet supplemented with 5×106 colony-forming unit (CFU)/kg Bacillus amyloliquefaciens+5×106 CFU/kg Saccharomyces cerevisiae (BA+SC). Growth performance, serum characteristics, carcass characteristics, and the mRNA expression of selected genes were measured. Results: This study compared several cultivars of tea, but Jinxuan showed the highest levels of the anti-obesity compound epigallocatechin gallate. 3T3-L1 preadipocytes treated with Jinxuan extract significantly reduced lipid accumulation. There were no significant differences in growth performance, serum characteristics, or carcass characteristics among the groups. However, in the 0.5% JBP group, mRNA expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were significantly decreased. In the 1% JBP group, FAS, ACC and peroxisome proliferator-activated receptor γ levels were significantly decreased. Moreover, inflammation-related mRNA expression levels were decreased by the addition of JBP. Conclusion: JBP contained abundant catechins and related bioactive compounds, which reduced lipid accumulation in 3T3-L1 preadipocytes, however there was no significant reduction in abdominal fat. This may be due to a lack of active anti-obesity compounds or because the major changes in fat metabolism were not in the abdomen. Nonetheless, lipogenesis-related and inflammation-related mRNA expression were reduced in the 1% JBP group. In addition, dietary supplementation with tea byproducts could reduce the massive amount of byproducts created during tea production and modulate lipid metabolism and the inflammatory response in chickens.

인삼 다당체의 항비만 활성 평가 및 기능성 소재 개발 (Anti-obese Function of Polysaccharides derived from Korean Ginseng (Panax ginseng C.A. Meyer) and Development of Functional Food Material in Preventing Obesity)

  • 손명수;김교남
    • 대한본초학회지
    • /
    • 제31권4호
    • /
    • pp.71-77
    • /
    • 2016
  • Objectives : Adipogenesis was defined as a differentiation process of preadipocytes into the adipocytes. Thus, to control of this process can be one of the most important strategies to prevent obesity. Korean ginseng(Panax ginseng C.A. Meyer) is one of the most widely used medicinal herbs. Although multiple biological activities of Korean ginseng, particularly ginsenosides, have been known, the anti-adipogenic role and function of polysaccharides from Korean ginseng are still unclear. In this study, we examined anti-adipogenic activity of polysaccharides and its molecular basis mechanisms are further investigated.Methods : The cytotoxicity of KGP in 3T3-L1 was evaluated by MTT assay. Anti-adipogenic effect of KGP was examined by Oil Red O (ORO) staining and microscopy observation in 3T3-L1 mature adipocytes. The mRNA expression levels of adipogenic transcriptional factors were analyzed by reverse transcription-polymer chain reaction (RT-PCR). To elucidate the adipogenic molecular mechanism of KGT, SB431542 (TGF-β specific inhibitor) was used.Results : We found that polysaccharides showed no effect on the viability of 3T3-L1 preadipocytes. Dose dependent inhibitory effect of polysaccharides on 3T3-L1 adipogenesis was observed as judged by ORO staining and microscopic image analysis. To obtain further mechanistic insight into anti-adipogenic function of polysaccharides, we then tested the effect of polysaccharides treatment on the adipogenic marker genes. The mRNA expressions level of C/EBPα, PPARγ, C/EBPβ, and fatty acid synthase (FAS) were dose-dependently inhibited by KGP treatment in 3T3-L1 mature adipocytes.Conclusions : In conclusion, these findings suggest that the KGP could be used in treatment of obesity and overweight related diseases.

Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

  • Yamasaki, Masayuki;Ogawa, Tetsuro;Wang, Li;Katsube, Takuya;Yamasaki, Yukikazu;Sun, Xufeng;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • 제7권4호
    • /
    • pp.267-272
    • /
    • 2013
  • The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPAR${\alpha}$ was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPAR${\gamma}$, and C/EBP${\alpha}$ were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.

Cydonia oblonga Miller fruit extract exerts an anti-obesity effect in 3T3-L1 adipocytes by activating the AMPK signaling pathway

  • Hyun Sook Lee;Jae In Jung;Jung Soon Hwang;Myeong Oh Hwang;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1043-1055
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The fruit of Cydonia oblonga Miller (COM) is used traditionally in Mediterranean region medicine to prevent or treat obesity, but its mechanism of action is still unclear. Beyond a demonstrated anti-obesity effect, the fruit was tested for the mechanism of adipogenesis in 3T3-L1 preadipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were cultured for 8 days with COM fruit extract (COME) at different concentrations (0-600 ㎍/mL) with adipocyte differentiation medium. The cell viability was measured using an MTT assay; triglyceride (TG) was stained with Oil Red O. The expression levels of the adipogenesis-related genes and protein expression were analyzed by reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS: COME inhibited intracellular TG accumulation during adipogenesis. A COME treatment in 3T3-L1 cells induced upregulation of the adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation and downregulation of the adipogenic transcription factors, such as sterol regulatory element-binding protein 1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α. The COME treatment reduced the mRNA expression of fatty acyl synthetase, adenosine triphosphate-citrate lyase, adipocyte protein 2, and lipoprotein lipase. It increased the mRNA expression of hormone-sensitive lipase and carnitine palmitoyltransferase I in 3T3-L1 cells. CONCLUSIONS: COME inhibits adipogenesis via the AMPK signaling pathways. COME may be used to prevent and treat obesity.

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

홍화 추출물이 생쥐 골수 유래 중간엽 줄기세포의 지방분화에 미치는 영향 (Effects of Carthamus Tinctorius Extract on Adipogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stromal Stem Cells)

  • 유성률;신선미
    • 대한한방내과학회지
    • /
    • 제38권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Objective: This study investigated the effect of purified Carthamus tinctorius (C. tinctorius) extracted with a hot water and ethanol method on adipogenic differentiation of mouse bone marrow-derived mesenchymal stromal stem cells (mBMSCs). Methods: The C. tinctorius was extracted using hot water and ethanol. The samples were concentrated by a rotary evaporator and were then dried using a freeze-dryer. The mBMSCs were cultured and maintained in a minimum essential medium eagle alpha (${\alpha}-MEM$) supplemented with 10% FBS and 1% antibiotic antimycotic solution. To induce adipogenic differentiation, the cells were treated with Dulbecco's modified eagle's medium-low glucose (DMEM-LG) containing 1 mg/mL insulin, 1 mM dexamethasone, and 0.5 mM 3-isobutyl-1-methylxanthine. To evaluate the adipogenic differentiation ability, oil-red O staining was performed after adipogenic differentiation for 21 days. The mRNA expression and protein level of adipogenic-related genes were quantified by quantitative real-time PCR and western blotting, respectively. Results: In the results of the MTT assay, no concentrations of C. tinctorius extracts showed toxicity on mBMSCs, so we fixed the treatment concentration of the extract at 100 ng/mL. In oil-red O staining, the water-C. tinctorius extract treatment significantly decreased adipogenic differentiation compared with the control and ethanol extract groups. The water-C. tinctorius extract group in particular showed reduced mRNA and protein expression of Peroxisome proliferator-activated receptor gamma ($Ppar{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/ebp{\alpha}$), which are adipogenic-related transcription factors. Conclusion: These data suggest that extract of C. tinctorius decreased the adipogenic differentiation of mBMSCs, while only water-C. tinctorius extract had an effect on different adipogenesis in mBMSCs. The C. tinctorius will be a useful therapeutic reagent for the prevention of obesity-related diseases such as diabetes, hyperlipidemia, coronary artery disease, and osteoporosis.

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice

  • Sun, Xufeng;Yamasaki, Masayuki;Katsube, Takuya;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.137-143
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS: C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS: Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-${\alpha}$, related to ${\beta}$-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS: Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing ${\beta}$-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake ($0.4{\times}10^{-5}$ vs $0.4{\times}10^{-5}$ mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.

고지방식이 유도 비만 마우스에서 천마 추출물의 항비만 효과 (Anti-Obesity Effects of Gastrodia elata Extracts on High Fat Diet-Induced Obese Mice)

  • 김예슬;김하림;박은희;송영은;김창수;하원배;우현준;한윤희;이정한
    • 한방재활의학과학회지
    • /
    • 제32권4호
    • /
    • pp.1-8
    • /
    • 2022
  • Objectives This study is to investigate the effects and mechanisms of Gastrodia elata extract (GEE) on the high-fat diet-induced obesity model. Methods C57BL/6 mice were randomly assigned into 5 groups (n=10). Control group was fed normal diet (ND). Obesity group was fed 60% high fat diet (HFD). The other three groups were fed HFD with 100, 200, 500 mg/kg GEE. After five weeks, body weight, liver and epididymal fat weight, triglyceride concentration in liver and serum, sterol regulatory element-binding protein-1 (SREBP-1), acetyl-CoA carboxylase (ACC), fatty acid synthase, peroxisome proliferator-activated receptor 𝛾 (PPAR-𝛾), CCAAT/enhancer binding protein 𝛼 (C/EBP-𝛼) expression level, insulin concentration in serum were measured. Results The GEE (100, 200, and 500 mg/kg)-treated animals exhibited substantial decreases in body mass, liver weight and epididymal white adipose tissue collate to the HFD-fed group. GEE treatment also reduced hepatic and serum triglyceride level. Furthermore, GEE treatment significantly inhibited adipogenesis in the GEE group by reducing the protein expression of SREBP-1, ACC and the messenger RNA expression of PPAR𝛾, C/EBP-𝛼, which are adipocyte differentiation-related genes. Conclusions These research outcomes recommend that GEE is possibly valuable for the prevention of HFD-induced obesity via modification of various pathways related with adipogenesis and adipocyte differentiation.

HFD 유도 C57BL/6J 비만 mice에서 AMPK/ACC/CPT-1 경로 촉진을 통한 산딸기 추출물의 비만 및 비알코올성 지방간 질환에 대한 보호 효과 (Protective Effect of Rubus crataegifolius Extracts Against Obesity and Non-alcoholic Fatty Liver Disease via Promotion of AMPK/ACC/CPT-1 Pathway in HFD-induced C57BL/6J Obese Mice)

  • 이영익;이희진;표수진;박용현;이명민;손호용;조진숙
    • 생명과학회지
    • /
    • 제33권12호
    • /
    • pp.967-977
    • /
    • 2023
  • Rubus crataegifolius (RC)는 장미과에 속하는 전통적인 아시아 약용 식물이다. RC 열매는 항산화 작용을 통해 성인병을 예방하는 것으로 알려져 있다. 본 연구에서는 RC 열매 추출물(RCex)이 비만과 비알코올성 지방간 질환(NAFLD)에 미치는 영향을 동물 모델을 통해 평가하였다. 28마리의 수컷 C57BL/6J 마우스에 8주간 비만을 유도한 후, 추출물을 8주간 경구 투여하였다. 그룹 1은 일반 대조군으로 표준사료를 섭취하였다. 그룹 2는 HFD 대조군으로, 그룹 3에는 심바스타틴(6.5 mg/kg/일)을, 그룹 4에는 RCex (200 mg/kg)을 투여하였다. RCex투여는 실험 마우스의 체중, 지방 조직, 간 무게를 감소시켰으며, 또한 지질 대사(ALT, AST, TC, TG, LDL, HDL)를 포함한 생화학적 바이오마커를 개선하였다. AMPK의 활성화는 지방생성 유전자(LXR, SREBP-1c, FAS, ACC1)의 발현을 감소시켰으며, RCex에 의한 CPT 활성 증진 효과를 검증하였다. RCex는 또한 에너지 소비 및 신진대사와 관련된 호르몬(adiponectin 및 leptin)의 혈장 수준에도 영향을 미쳤다. 또한, RCex가 HFD로 유도된 비만 mice의 포도당 불내성을 개선했음을 확인 하였다. RCex는 AMPK의 인산화를 통해 지방산 산화 및 지방산 합성을 조절함으로써 항비만 및 항NAFLD 효과를 가짐을 처음으로 입증하였다. 이는 R. crataegifolius가 비만 및 관련 NAFLD 예방에 좋은 보충제가 될 수 있음을 시사한다.

Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens

  • Zhu, Yaling;Mao, Huirong;Peng, Gang;Zeng, Qingjie;Wei, Qing;Ruan, Jiming;Huang, Jianzhen
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.143-153
    • /
    • 2021
  • Objective: To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. Methods: We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. Results: We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. Conclusion: These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.