• Title/Summary/Keyword: OVOCs

Search Result 3, Processing Time 0.016 seconds

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Characteristics of Diurnal Variation of Volatile Organic Compounds in Seoul, Korea during the Summer Season (서울지역 여름철 VOCs 일변동 특성에 관한 연구)

  • Park, Jong-sung;Song, In-ho;Kim, Hyun-woong;Lim, Hyung-bae;Park, Seung-myung;Shin, Su-na;Shin, Hye-jung;Lee, Sang-bo;Kim, Jeong-su;Kim, Jeong-ho
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.264-280
    • /
    • 2018
  • In this study, volatile organic compounds (VOCs) were measured using a proton transfer reaction-time of flight-mass spectrometer (PTR-ToF-MS) at the Seoul Metropolitan Area Intensive Monitoring Station (SIMS) in Korea during the summer season of 2018. The results revealed that oxygenated VOCs (OVOCs) contributed a large fraction (83.6%) of the total VOCs, with methanol being the most abundant constituent (38.6%). The VOCs measured at SIMS were strongly influenced by local conditions. Non-volatile organic compounds (NVOCs), such as pinene, increased due to northeasterly wind direction in the morning, and OVOCs and anthropogenic VOCS (AVOCs) increased with northwesterly wind direction during the daytime. This was the result of the eastward location of Bukhansan National Park and the westward location of urban area from the SIMS location. The VOCs included abundant oxidized forms of VOCs, which can affect the generation of fine dust through various response pathways in the atmosphere. The real-time measurement technique using PTR-ToF-MS suggested in this study is expected to contribute to an improved scientific understanding of high-concentration fine dust events because the high temporal resolution makes it possible to analyze the variations of VOCs reflected in dynamic events.

A Study on the Estimation of BVOCs Emission in Jeju Island (1) (제주지역 BVOCs의 배출량 산정에 관한 연구(1))

  • Lee, Ki-Ho;Kim, Hyeong-Cheol;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2057-2069
    • /
    • 2014
  • This study was carried out to estimate the BVOCs emissions with the emission factors which reflected the native conditions of forests in Jeju Island. This study made effective use of the previous data for the weather data and the emission rate of each organic volatile component measured at 10 species of conifers and broad leaved trees. The CORINAIR method and the grid system of $1km{\times}1km$ for whole area of Jeju Island were adopted in calculating the BVOCs emission emitted from forest. The vegetation information for Jeju Island was referred to GIS and a government report. By the results of BVOCs emission for Jeju Island, the 85% of monoterpene emission was emitted from conifers and the others was from broad leaved trees. Most of monoterpene emission was attributed to Pinus thunbergii and Cryptomeria japonica. The broad leaved trees greatly contributed to the isoprene emission and Quercus serrata played a dominant role in emission of isoprene. The total amount of BVOCs emission was estimated as $3612ton\;yr^{-1}$ in Jeju Island. The 51.1% of total emission was contributed to conifers, the 44.9% to broad leaved trees, and the 4.0% to grassland. Of total emission of BVOCs, monoterpene accounted for 32.3%, isoprene for 28.0%, and OVOCs for 39.7%. The BVOCs emission estimated by this study was less than that estimated by other previous study. This means that it is important to survey the emission rate at native conditions and gather the detailed information for various species of vegetation on target region.