• Title/Summary/Keyword: OTFTs

Search Result 199, Processing Time 0.024 seconds

Electrical Properties of OTFTs and Inverters by using Ink-Jet Printing with Polyvinylphenol Insulator and TIPS-Pentacene Semiconductor

  • Kang, Rae-Wook;Xu, Yong-Xian;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.651-653
    • /
    • 2008
  • In this paper, we report electrical properties of OTFTs by using ink-jet printing with polyvinylphenol (PVP) for gate insulator and bis(triisopropylsilylenthynyl) pentacene (TIPS pentacene) for semiconductor. OTFTs produced the excellent performance with the mobility of $1.27\;cm^2/V.s$ for top contact structure(TCS) and inverter consisting of two OTFTs exhibited the gain of 6.75.

  • PDF

Preparation of $PMMA-co-MMA/TiO_2$ Composite Film by Sol-Gel Process and Its Application to OTFTs as a Gate Insulator

  • Park, Jae-Hoon;Kim, Hyun-Suck;Bong, Kang-Wook;June, Bong;Choi, Hyoung-Jin;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1146-1149
    • /
    • 2006
  • In this study, nanocomposite layer composed of PMMA-co-MMA and $TiO_2$ was prepared by sol-gel process using TTIP as a precursor and was utilized as a gate insulator of OTFTs. The composite insulator provides the lower threshold voltage and the enhanced sub threshold slope of OTFTs mainly due to its higher dielectric constant than that of the bare PMMA-co-MMA. Consequently, it is demonstrated that the sol-gel process can open an interesting direction for the fabrication of high-performance OTFTs, and contribute for OTFTs to be feasible for real applications.

  • PDF

The Effect of Adhesion layer on Gate Insulator for OTFTs (OTFT의 게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.70-71
    • /
    • 2005
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 6FDA and ODA. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2$/Vs, threshold voltage of -0.8 V and on-of current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

  • PDF

Effects of multi-stacked hybrid encapsulation layers on the electrical characteristics of flexible organic field effect transistors

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.257-257
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio ($I_{on}/I_{off}$), leakage current, threshold voltage, and hysteresis, under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stabilities of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers were investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic layer deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to $10^5$ times with 5mm bending radius. In the most of the devices after $10^5$ times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the $I_{on}/I_{off}$ and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

Effect of Adhesion Layer on Gate Insulator (게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.357-361
    • /
    • 2006
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-oxydianiline. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2/Vs$, threshold voltage of -0.8 V and on-off current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

Passivation Layers for Organic Thin-film-transistors

  • Lee, Ho-Nyeon;Lee, Young-Gu;Ko, Ik-Hwan;Kang, Sung-Kee;Lee, Seong-Eui;Oh, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Inorganic layers, such as SiOxNy and SiOx deposited using plasma sublimation method, were tested as passivation layer for organic thin-film-transistors (OTFTs). OTFTs with bottom-gate and bottom-contact structure were fabricated using pentacene as organic semiconductor and an organic gate insulator. SiOxNy layer gave little change in characteristics of OTFTs, but SiOx layer degraded the performance of OTFTs severely. Inferior barrier properties related to its lower film density, higher water vapor transmission rate (WVTR) and damage due to process environment of oxygen of SiOx film could explain these results. Polyurea and polyvinyl acetates (PVA) were tested as organic passivation layers also. PVA showed good properties as a buffer layer to reduce the damage come from the vacuum deposition process of upper passivation layers. From these results, a multilayer structure with upper SiOxNy film and lower PVA film is expected to be a superior passivation layer for OTFTs.

Fabrication and Characterization of an OTFT-Based Biosensor Using a Biotinylated F8T2 Polymer

  • Lim, Sang-Chul;Yang, Yong-Suk;Kim, Seong-Hyun;Kim, Zin-Sig;Youn, Doo-Hyeb;Zyung, Tae-Hyoung;Kwon, Ji-Young;Hwang, Do-Hoon;Kim, Do-Jin
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.647-652
    • /
    • 2009
  • Solution-processable organic semiconductors have been investigated not only for flexible and large-area electronics but also in the field of biotechnology. In this paper, we report the design and fabrication of biosensors based on completely organic thin-film transistors (OTFTs). The active material of the OTFTs is poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) polymer functionalized with biotin hydrazide. The relationship between the chemoresistive change and the binding of avidin-biotin moieties in the polymer is observed in the output and on/off characteristics of the OTFTs. The exposure of the OTFTs to avidin causes a lowering of ID at $V_D$ = -40 V and $V_G$ = -40 V of nearly five orders of magnitude.

Flexible OTFT-OLED Display Panel using Ag-paste for Source and Drain Electrodes

  • Ryu, Gi-Seong;Kim, Young-Bea;Song, Hyun-Jin;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1789-1791
    • /
    • 2007
  • We fabricated OTFT-OLED display panel by using Ag-paste for source and drains electrode of OTFTs. The OTFTs were fabricated by solution processes such as spin-coating for PVP gate dielectric and screen printing for S/D electrodes with Ag-paste, except pentacene active layer which was deposited by evaporation. The mobility was 0.024 cm2/V.sec , off state current ${\sim}10-11A$, threshold voltage 7.6 V and on/off current ratio ${\sim}105$. The panel consisted of 16 x 16 pixels and each pixel consisted of 2 OTFTs, 1 Capacitor and 1 OLED. The pixels successfully worked in terms of current magnitude supplied to OLED and the control ability of driving and switching OTFTs.

  • PDF

Iodine Doping of Pentacene and its Electrical Properties

  • Rahim, Abdur;Lee, Young-Kyu;Lee, Chi-Young;Lee, Jae-Gab
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.238.2-238.2
    • /
    • 2011
  • Organic thin film transistors (OTFTs) have been attracting considerable attention because of their potential use in low-cost, large area, electronic devices such as flexible displays, biochemical sensors, and smart cards. In past several years, gold/pentacene has been frequently used in OTFTs because of the high mobility of pentacene and the high work function of gold. To improve the performance of the OTFTs contact area doping of pentacene with p-doping materials are well known. In this work we demonstrated selectively contact area doping of pentacene with Iodine vapor. For effective doping elevated pentacene layer under the source-drain area was deposited and exposed to Iodine vapor. We got better electrical performance for elevated pentacene structure rather than planer structure with relatively high field-effect mobility.

  • PDF

Contact resistance extraction between Ink-jet printed PEDOT-PSS and Pentacene in OTFTs

  • Kim, Myung-Kyu;Kang, Rae-Wook;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.654-656
    • /
    • 2008
  • We enhanced the conductivity of PEDOT-PSS by mixing with glycerol and fabricated the low contact resistance of source and drain[S/D] electrodes of OTFT with PEDOT-PSS by ink-jetting printing. The contact resistance was much smaller by seven times than Au with $200k{\Omega}$ at $V_G=-5V$. For the bottom contacted OTFTs, the performance was comparable to OTFTs with Au electrodes with the field effect mobility of $0.2\;cm^2/V s$.

  • PDF