• 제목/요약/키워드: OS

Search Result 3,186, Processing Time 0.035 seconds

맥 포렌식을 통한 아이폰 아티팩트 분석 기법

  • Lee, Kyeongsik
    • Review of KIISC
    • /
    • v.26 no.5
    • /
    • pp.17-21
    • /
    • 2016
  • 아이폰은 애플컴퓨터에서 개발한 스마트폰으로 애플의 데스크톱 운영체제인 OS X를 스마트폰에 맞게 변형한 iOS 운영체제를 사용한다. iOS는 폐쇠성과 높은 보안성 기능을 내장함으로 사용자에게는 개인 정보를 안전하게 보호할 수 있는 장점을 제공하지만, 디지털 포렌식 분석가에게는 분석 시 많은 어려움을 주고 있다. 애플은 2013년 OS X 매버릭스(10.9)를 시작으로 iOS와 OS X간의 기밀 정보 동기화 및 통화/문자 메시지를 연동할 수 있는 기능을 제공하기 시작하였으며, 2016년에 공개된 시에라(10.12)에서도 클립보드 기능 공유 등의 다양한 연동 기능을 제공하고 있다. 이러한 편의 기능은 분석가에게 아이폰 분석이 어려운 상황에서 아이폰 소유주의 OS X 시스템을 분석하여 아이폰의 아티팩트를 확보할 수 있는 한가지 방법이 될 수 있다. 본 논문에서는 아이폰에서만 획득 가능했던 아티팩트인 통화 및 문자 메시지 내역, 패스워드 정보 등이 OS X와 어떻게 연동되는지 알아보고 OS X 분석 만으로 이러한 증거를 확보할 수 있는 기법을 알아보도록 한다.

Non-preemptive Real-time Scheduling in TinyOS Using TinyOS Task Combination (TinyOS의 태스크 결합을 통한 비선점형 실시간 스케줄러 구현 방안)

  • Son, Chiwon;Tak, Sungwoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.670-673
    • /
    • 2009
  • TinyOS는 현재 가장 널리 사용되는 센서 노드용 운영체제이지만, 태스크의 실시간성을 지원하지 않는다는 단점이 있다. 이에 TinyOS에 실시간성을 부여하기 위한 다양한 연구가 진행되었다. 그러나 이들 연구는 TinyOS의 사용자 태스크에 대한 실시간성만을 고려하여, TinyOS 플랫폼이 제공하는 태스크가 포함된 실제의 센서 노드 작업에 대해서는 실시간성을 만족시키지 못한다는 문제점이 있다. 따라서 본 논문에서는 TinyOS에서 센서 노드 작업의 실시간성을 지원하는 새로운 스케줄링 기법을 제안하고자 한다. 이를 위해 기존 연구의 스케줄링 기법을 센서 노드 작업에 적용했을 때 나타나는 작업 중첩 현상과 우선순위 조정 현상을 분석하고, 이를 효율적으로 해결하는 비선점형 EDF(Earliest Deadline First) 작업 스케줄링 기법을 구현하였다. 그리고 제안한 스케줄링 기법은 TinyOS의 이벤트 기반 비선점형 속성을 유지하여 제한된 하드웨어 자원을 가지는 센서 노드에 적합하다는 것을 확인하였다.

Determination of the MYB Motif Interacting with WD40 and Basic Helix Loop Helix Proteins

  • Kim, Ji-Hye;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.67-70
    • /
    • 2012
  • Plant MYB transcription factors regulate secondary metabolism, cellular morphogenesis, and plant hormone signaling pathway. MYB proteins in plants consist of two repeats of 50 amino acid residues, which are referred to as R2R3 and they interact with WD40 or basic helix loop helix (bHLH) proteins. Yeast two hybrid assay was determined whether rice MYB protein interacts with either OsTTG1, which contains a WD40 domain, or with OsGL3, which contains a bHLH domain. Among 30 OsMYB proteins, three interacted with OsTTG1 and five interacted with OsGL3. A series of MYB mutants were created to determine the MYB domain important for the interaction with OsTTG1 or OsGL3. By using the yeast two hybrid assay, we found that the R3 motif of OsMYB10 and the R2 motif of OsMYB16 were required for interaction with OsTTG1 and OsGL3 proteins, respectively.

Physiological and molecular analysis of OsTPS30 by gamma irradiation

  • Kim, Se Won;Jung, In Jung;Kim, Sang Hoon;Choi, Hong-Il;Kang, Si-Yong;Kim, Jin-Baek
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2019
  • Terpenes constitute a large class of secondary metabolites in plants. The Oryza sativa terpene synthase is a vital gene in plant defense response. In this study, the molecular and physiological functions of Oryza sativa terpene synthase 30 (OsTPS30, LOC_Os08g07080) were investigated after exposure of the seeds and plants to gamma-rays. The OsTPS30 expression was slightly induced at 200 Gray (Gy), but was significantly induced at 400 Gy. The total terpenoid was synthesized more in OsTPS30-overexpressing (OX-OsTPS30) Arabidopsisthaliana plants than in wild-type (WT) plants. The OX-OsTPS30 plants exhibited resistance to gamma-rays, as compared to WT. The OX-OsTPS30 plants had significantly increased height and weight after gamma irradiation. Additionally, the activity of antioxidant enzymes was increased more in OX OsTPS30 plants than in WT plants after gamma irradiation. Furthermore, the OsTPS30-GFP fusion protein was mostly localized in the chloroplast, suggesting that OsTPS30 is putative MEP pathway-related terpene synthase.

A dominant negative OsKAT2 mutant delays light-induced stomatal opening and improves drought tolerance without yield penalty in rice

  • Kim, Jin-Ae;Moon, Seok-Jun;Lee, Yongsang;Min, Myung Ki;Yoon, In sun;Kwon, Taek-Ryoun;Kim, Beom-Gi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.110-110
    • /
    • 2017
  • Stomata are the main gateways for water and air transport between leaves and the environment. Inward-rectifying potassium channels regulate photo-induced stomatal opening. Rice contains three inward rectifying shaker-like potassium channel proteins, OsKAT1, OsKAT2 and OsKAT3. Among these, only OsKAT2 is specifically expressed in guard cells. Here, we investigated the functions of OsKAT2 in stomatal regulation using three dominant negative mutant proteins, OsKAT2(T235R), OsKAT2(T285A) and OsKAT2(T285D), which are altered in amino acids in the channel pore and at a phosphorylation site. Yeast complementation and patch clamp assays showed that all three mutant proteins lost channel activity. However, among plants overexpressing these mutant proteins, only plants overexpressing OsKAT2(T235R) showed significantly less water loss than the control. Moreover, overexpression of this mutant protein led to delayed photo-induced stomatal opening and increased drought tolerance. Our results indicate that OsKAT2 is an inward-rectifying shaker-like potassium channel that mainly functions in stomatal opening. Interestingly, overexpression of OsKAT2(T235R) did not cause serious defects in growth or yield in rice, suggesting that OsKAT2 is a potential target for engineering plants with improved drought tolerance without yield penalty.

  • PDF

Differential expression of rice calmodulin promoters in response to stimuli and developmental tissue in transgenic tobacco plants

  • Kim, Yu-Jung;Cho, Eun-Kyung;Lee, Soo-In;Lim, Chae-Oh;Choi, Young-Ju
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • The promoters of OsCaM1 and OsCaM3 were characterized after sequencing and fused to the reporter gene, GUS. The constructs were then transformed into the tobacco plant. Histochemical analysis of GUS showed different expression patterns in pOsCaM1::GUS and pOsCaM3:: GUS transgenic plants. The expression of pOsCaM1::GUS in 4- to 15-day-old seedlings in particular was observed only in the root, while the expression of pOsCaM3::GUS was detected in both the cotyledons and root. Also, pRCaM1::GUS was detected in all the tissues surrounding the root system, while the presence of pOsCaM3::GUS was observed in the root, except in the root meristem. However, in mature transgenic plants, the expression of pOsCaM1::GUS and OsRCaM3::GUS was scarcely detected. Under wounding stress, the GUS activity of pOsCaM1 and pOsCaM3 was strongly induced, and the activity of pOsCaM3 especially, was retained for long periods. In the phloem, pOsCaM3 activity induced by hormone treatments and abiotic stresses was also identified.

Class A and class B MADS box genes fro rice flower development

  • An, Gyn-Heung;Moo,Yong-Hwan;Jeon, Jong-Seong;Kang, Hong-Gyu;Sung, Soon-Kee
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.21-35
    • /
    • 1999
  • We have previously isolated OsMADS4 gene that is a member of the class B MADS box genes from rice. In this study, another member of the class B MADS box genes was isolated from rice flower by the yeast two-hybrid screening method using OsMADS4 as bait. RNA blot analyses revealed that the clone, OsMADS16, was expressed in the second and third whorls, whereas the OsMADS4 transcripts were present in the second, third, and fourth whorls. These expression patterns of the OsMADS16 and OsMADS4 genes are very similar with those of AP3 and PI, the class B genes of Arabidopsis, respectively. In the yeast two-hybrid system, OsMADS4 interacted only with OsMADS16 among several rice MADS genes investigated, suggesting that OsMADS4 and OsMADS16 function as a heterodimer in specifying sepal and petal identities. We have also isolated OsMADS6 gene using OsMADS1 as a probe. Both are members of the AGL2 MADS family. Various MADS genes that encode for protein-protein interaction partners of the OsMADS6 protein were isolated by the yeast two-hybrid screening method. A majority of these genes belong to the AGL2 family. Sequence Homology, expression pattern, and ectopic expression phenotypes indicated that one of the interaction partners, OsMADS14, appears to be homologous to API, the class A MADS gene of Arabidopsis.

  • PDF

Identification and expression of leuD Gene in Rice (Oryza sativa L.) (벼(Oryza sativa L.)의 leuD 유전자)

  • Lee, Eun-Tag;Kang, Sang-Gu
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.772-777
    • /
    • 2007
  • A rice OsLeuD gene for small subunit of 3-isopropylmalate isomerase (IPMI) (EC 4.2.1.33) has been isolated. OsLeuD gene is located on 109.3 cM of chromosome 2. OsLeuD gene was expressed abundantly in metabolically active organs including leaves and developing seeds, indicating that OsLeuD gene expression is developmentally regulated. The cDNA of OsLeuD gene was coded for 257 amino acids which showed 58% and 48% homology to small subunits of IPMI in OsLeuD genes of cyanobacteria and green sulfur bacteria, respectively. The molecular character of OsLeuD is closely related to those of photosynthetic bacteria rather than those of eukaryotes including fungi and yeast. This suggests that OsLeuD gene in chromosomal genome of plants may possibly be originated from chloroplast genome.

A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice

  • Minh-Thu, Pham-Thi;Kim, Joung Sug;Chae, Songhwa;Jun, Kyong Mi;Lee, Gang-Seob;Kim, Dong-Eun;Cheong, Jong-Joo;Song, Sang Ik;Nahm, Baek Hie;Kim, Yeon-Ki
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.781-798
    • /
    • 2018
  • Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.

Expression Analysis of OsCPK11 by ND0001 oscpk11 Mutants of Oryza sativa L. under Salt, Cold and Drought Stress Conditions (염분, 저온 및 가뭄 스트레스 조건에서 벼 ND0001 oscpk11 돌연변이체의 OsCPK11 발현 분석)

  • Kim, Hyeon-Mi;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.115-125
    • /
    • 2021
  • Calcium-dependent protein kinases (CDPKs) are known to be involved in regulating plant responses to abiotic stresses such as salinity, cold temperature and dehydration,. Although CDPKs constitute a large multigene family consisting of 31 genes in rice, only a few rice CDPKs' functions have been identified. Therefore, in order to elucidate the functions of OsCPK11 in rice, this study was intended to focus on the expression pattern analysis of OsCPK11 in wild type and ND0001 oscpk11 mutant plants under these abiotic stresses. For the salt, cold and drought stress treatment, seedlings were exposed to 200 mM NaCl, 4℃ and 20% PEG 6,000, respectively. RT-PCR and quantitative real-time PCR were performed to determine the expression patterns of OsCPK11 in wild type and ND0001 mutant plants. RT-PCR results showed that OsCPK11 transcripts in the wild type and heterozygous mutant were detected, but not in the homozygous mutant. Real-time PCR results showed that relative expression of OsCPK11 of wild type plants was increased and reached to the highest level at 24 hr, at 6 hr and at 24 hr under salt, cold and drought stress conditions, respectively. Relative expression of OsCPK11 of ND0001 homozygous plant was significantly reduced compared to that of wild type. These results suggested that oscpk11 homozygous mutant knocks out OsCPK11 and OsCPK11 might be involved in salt, cold and drought stress signaling by regulating its gene expression.