DOI QR코드

DOI QR Code

A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice

  • Minh-Thu, Pham-Thi (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Joung Sug (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Chae, Songhwa (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Jun, Kyong Mi (Genomics Genetics Institute, GreenGene Biotech Inc.) ;
  • Lee, Gang-Seob (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences) ;
  • Kim, Dong-Eun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Cheong, Jong-Joo (Center for Food and Bioconvergence, Seoul National University) ;
  • Song, Sang Ik (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Nahm, Baek Hie (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Yeon-Ki (Department of Bioscience and Bioinformatics, Myongji University)
  • Received : 2018.05.11
  • Accepted : 2018.06.25
  • Published : 2018.08.31

Abstract

Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.

Keywords

References

  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056. https://doi.org/10.1126/science.1115983
  2. Agalou, A., Purwantomo, S., Overnas, E., Johannesson, H., Zhu, X., Estiati, A., de Kam, R.J., Engström, P., Slamet-Loedin, I.H., and Zhu, Z. (2008). A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol. Biol. 66, 87-103. https://doi.org/10.1007/s11103-007-9255-7
  3. Aguirrezabal, L., BOUCHIER-COMBAUD, S., Radziejwoski, A., Dauzat, M., Cookson, S.J., and Granier, C. (2006). Plasticity to soil water deficit in Arabidopsis thaliana: dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes. Plant Cell Environ. 29, 2216-2227. https://doi.org/10.1111/j.1365-3040.2006.01595.x
  4. Bernier, G., and Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 3, 3-16. https://doi.org/10.1111/j.1467-7652.2004.00114.x
  5. Bhattacharjee, A., and Jain, M. (2013). Homeobox genes as potential candidates for crop improvement under abiotic stress. In Plant Acclimation to Environmental Stress (Springer), pp. 163-176.
  6. Blazquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168. https://doi.org/10.1038/ng1085
  7. Blum, A. (2002). Drought tolerance-is it a complex trait? Field screening for drought tolerance in crop plants with emphasis on rice. 17-22.
  8. Bomblies, K. (2000). Whole mount GUS staining. Arabidopsis: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), pp. 243-245.
  9. Campo, S., Baldrich, P., Messeguer, J., Lalanne, E., Coca, M., and San Segundo, B. (2014). Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol. 165, 688-704. https://doi.org/10.1104/pp.113.230268
  10. Chae, S., Kim, J.S., Jun, K.M., Lee, S.-B., Kim, M.S., Nahm, B.H., and Kim, Y.-K. (2017). Analysis of genes with alternatively spliced transcripts in the leaf, root, panicle and seed of rice using a long oligomer microarray and RNA-Seq. Mol. Cells 40, 714-730.
  11. Chae, S., Kim, J.S., Jun, K.M., Pahk, Y.-M., Kim, M.-J., Lee, S.-B., Park, H.-M., Lee, T.-H., Nahm, B.H., and Kim, Y.-K. (2016). Analysis of representative organ-specific genes and promoters of rice using a 3'ORF-oriented long oligomer microarray. J. Plant Biol. 59, 579-593. https://doi.org/10.1007/s12374-016-0276-0
  12. Chan, R.L., Gago, G.M., Palena, C.M., and Gonzalez, D.H. (1998). Homeoboxes in plant development. Biochimica et Biophysica Acta 1442, 1-19. https://doi.org/10.1016/S0167-4781(98)00119-5
  13. Chen, H.-C., Hsieh-Feng, V., Liao, P.-C., Cheng, W.-H., Liu, L.-Y., Yang, Y.-W., Lai, M.-H., and Chang, M.-C. (2017). The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol. Biol. 94, 531-548. https://doi.org/10.1007/s11103-017-0624-6
  14. Cheng, H., Song, S., Xiao, L., Soo, H.M., Cheng, Z., Xie, D., and Peng, J. (2009). Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet. 5, e1000440. https://doi.org/10.1371/journal.pgen.1000440
  15. Cheng, S., Huang, Y., Zhu, N., and Zhao, Y. (2014). The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 549, 266-274. https://doi.org/10.1016/j.gene.2014.08.003
  16. Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31. https://doi.org/10.1038/353031a0
  17. Dai, M., Hu, Y., Zhao, Y., Liu, H., and Zhou, D.-X. (2007). A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol. 144, 380-390. https://doi.org/10.1104/pp.107.095737
  18. Deveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., Moreau, H., Kreis, M., and Lecharny, A. (2008). Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol. Biol. 8, 291. https://doi.org/10.1186/1471-2148-8-291
  19. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18, 926-936. https://doi.org/10.1101/gad.1189604
  20. Doke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 23, 359-367. https://doi.org/10.1016/0048-4059(83)90020-6
  21. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 33, 751-763. https://doi.org/10.1046/j.1365-313X.2003.01661.x
  22. Elmayan, T., Fromentin, J., Riondet, C., Alcaraz, G., BLEIN, J.P., and SIMON-PLAS, F. (2007). Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells. Plant, Cell Environ. 30, 722-732. https://doi.org/10.1111/j.1365-3040.2007.01660.x
  23. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  24. Fukao, T., Harris, T., and Bailey-Serres, J. (2008). Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice. Ann. Bot. 103, 143-150.
  25. Fukao, T., Yeung, E., and Bailey-Serres, J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23, 412-427. https://doi.org/10.1105/tpc.110.080325
  26. Gao, H., Jin, M., Zheng, X.-M., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., and Zhou, K. (2014). Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111, 16337-16342. https://doi.org/10.1073/pnas.1418204111
  27. Gray, S.B., and Brady, S.M. (2016). Plant developmental responses to climate change. Dev. Biol. 419, 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
  28. Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657-668. https://doi.org/10.1242/dev.00963
  29. Hamant, O., and Pautot, V. (2010). Plant development: a TALE story. C R Biol. 333, 371-381. https://doi.org/10.1016/j.crvi.2010.01.015
  30. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719. https://doi.org/10.1038/nature01549
  31. Heschel, M.S., and Riginos, C. (2005). Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminaceae). Am. J. Bot. 92, 37-44. https://doi.org/10.3732/ajb.92.1.37
  32. Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., and Xiong, L. (2008). Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 67, 169-181. https://doi.org/10.1007/s11103-008-9309-5
  33. Hume, M.A., Barrera, L.A., Gisselbrecht, S.S., and Bulyk, M.L. (2014). UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res. 43, D117-D122.
  34. Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2009). Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21, 3493-3505. https://doi.org/10.1105/tpc.109.069997
  35. Ishikawa, R., Aoki, M., Kurotani, K.-i., Yokoi, S., Shinomura, T., Takano, M., and Shimamoto, K. (2011). Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285, 461-470. https://doi.org/10.1007/s00438-011-0621-4
  36. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in coldresponsive gene expression in transgenic rice. Plant Cell Physiol. 47, 141-153. https://doi.org/10.1093/pcp/pci230
  37. Itoh, J.I., Nonomura, K.I., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., and Nagato, Y. (2005). Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46, 23-47. https://doi.org/10.1093/pcp/pci501
  38. Jain, M., Tyagi, A.K., and Khurana, J.P. (2008). Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J. 275, 2845-2861. https://doi.org/10.1111/j.1742-4658.2008.06424.x
  39. Jang, I.-C., Nahm, B.H., and Kim, J.-K. (1999). Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol. Breed. 5, 453-461. https://doi.org/10.1023/A:1009665314850
  40. Jeong, D.-H., Sung, S.-K., and An, G. (1999). Molecular cloning and characterization of CONSTANS-like cDNA clones of the Fuji apple. J. Plant Biol. 42, 23-31. https://doi.org/10.1007/BF03031143
  41. Jin, J., Tian, F., Yang, D.-C., Meng, Y.-Q., Kong, L., Luo, J., and Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040-D1045.
  42. Kadota, Y., Shirasu, K., and Zipfel, C. (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56, 1472-1480. https://doi.org/10.1093/pcp/pcv063
  43. Kim, S.L., Lee, S., Kim, H.J., Nam, H.G., and An, G. (2007). OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol. 145, 1484-1494. https://doi.org/10.1104/pp.107.103291
  44. Kim, M.-J., Lee, T.-H., Pahk, Y.-M., Kim, Y.-H., Park, H.-M., Do Choi, Y., Nahm, B.H., and Kim, Y.-K. (2009). Quadruple 9-mer-based protein binding microarray with DsRed fusion protein. BMC Mol. Biol. 10, 91. https://doi.org/10.1186/1471-2199-10-91
  45. Kim, H., Hwang, H., Hong, J.-W., Lee, Y.-N., Ahn, I.P., Yoon, I.S., Yoo, S.-D., Lee, S., Lee, S.C., and Kim, B.-G. (2011). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J. Exp. Bot. 63, 1013-1024.
  46. Kim, J.S., Kim, J., Lee, T.-H., Jun, K.M., Kim, T.H., Kim, Y.-H., Park, H.-M., Jeon, J.-S., An, G., and Yoon, U.-H. (2012). FSTVAL: a new web tool to validate bulk flanking sequence tags. Plant Methods 8, 19. https://doi.org/10.1186/1746-4811-8-19
  47. Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262-267. https://doi.org/10.1016/S1360-1385(01)01946-X
  48. Koo, B.-H., Yoo, S.-C., Park, J.-W., Kwon, C.-T., Lee, B.-D., An, G., Zhang, Z., Li, J., Li, Z., and Paek, N.-C. (2013). Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol. Plant 6, 1877-1888. https://doi.org/10.1093/mp/sst088
  49. Koornneef, M. (1994). Arabidopsis genetics. In Arabidopsis (Cold Spring Harbor Laboratory Press), pp. 89-120.
  50. Kotchoni, S.O., and Gachomo, E.W. (2006). The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 31, 389-404. https://doi.org/10.1007/BF02704112
  51. Kumar, A., Mishra, P., Kumari, K., and Panigrahi, K. (2012). Environmental stress influencing plant development and flowering. Front. Biosci. 4, 1315-1324.
  52. Kwon, C.-T., Koo, B.-H., Kim, D., Yoo, S.-C., and Paek, N.-C. (2015). Casein kinases I and $2{\alpha}$ phosphorylate Oryza sativa pseudo-response regulator 37 (OsPRR37) in photoperiodic flowering in rice. Mol. Cells 38, 81-88.
  53. Lamb, C., and Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Ann. Rev. Plant Biol. 48, 251-275. https://doi.org/10.1146/annurev.arplant.48.1.251
  54. Lee, S., Jung, K.-H., An, G., and Chung, Y.-Y. (2004). Isolation and characterization of a rice cysteine protease gene, OsCP1, using TDNA gene-trap system. Plant Mol. Biol. 54, 755-765. https://doi.org/10.1023/B:PLAN.0000040904.15329.29
  55. Lin, H., Niu, L., McHale, N.A., Ohme-Takagi, M., Mysore, K.S., and Tadege, M. (2013). Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc. Natl. Acad. Sci. USA 110, 366-371. https://doi.org/10.1073/pnas.1215376110
  56. Lovell, J.T., Juenger, T.E., Michaels, S.D., Lasky, J.R., Platt, A., Richards, J.H., Yu, X., Easlon, H.M., Sen, S., and McKay, J.K. (2013). Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Proc. Biol. Sci. 280, 20131043. https://doi.org/10.1098/rspb.2013.1043
  57. Ludlow, M.M. (1989). Strategies of response to water stress. (SPB Academic Publishers). pp. 269-281.
  58. Luo, H., Song, F., and Zheng, Z. (2005). Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. J. Exp. Bot. 56, 2673-2682. https://doi.org/10.1093/jxb/eri260
  59. Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., Arrivault, S., Tohge, T., Pineda, B., and Anton, M.T. (2011). Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development. Plant Physiol. 157, 1650-1663. https://doi.org/10.1104/pp.111.186874
  60. Ma, X., Sukiran, N.L., Ma, H., and Su, Z. (2014). Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis. BMC Plant Biol. 14, 164. https://doi.org/10.1186/1471-2229-14-164
  61. Major, D. (1980). Environmental effects on flowering. Hybridization of crop plants. 1-15.
  62. Mandaokar, A., Thines, B., Shin, B., Markus Lange, B., Choi, G., Koo, Y.J., Yoo, Y.J., Choi, Y.D., Choi, G., and Browse, J. (2006). Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 46, 984-1008. https://doi.org/10.1111/j.1365-313X.2006.02756.x
  63. Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., and Gonzales, N.R. (2010). CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, D225-D229.
  64. Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z.X., Minobe, Y., and Yano, M. (2011). Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J. 66, 603-612. https://doi.org/10.1111/j.1365-313X.2011.04517.x
  65. Mckay, J.K., Richards, J.H., and Mitchell-Olds, T. (2003). Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol. Ecol.12, 1137-1151. https://doi.org/10.1046/j.1365-294X.2003.01833.x
  66. Minh-Thu, P.-T., Hwang, D.-J., Jeon, J.-S., Nahm, B.H., and Kim, Y.-K. (2013). Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice 6, 38. https://doi.org/10.1186/1939-8433-6-38
  67. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., and Van Breusegem, F. (2011). ROS signaling: the new wave? Trend Plant Sci. 16, 300-309. https://doi.org/10.1016/j.tplants.2011.03.007
  68. Mundy, J., and Chua, N.-H. (1988). Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7, 2279-2286. https://doi.org/10.1002/j.1460-2075.1988.tb03070.x
  69. Nakashima, K., Tran, L.S.P., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617-630. https://doi.org/10.1111/j.1365-313X.2007.03168.x
  70. Nardmann, J., Reisewitz, P., and Werr, W. (2009). Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol. Biol. Evol. 26, 1745-1755. https://doi.org/10.1093/molbev/msp084
  71. Nicholas, K.B. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew. news 4, 14.
  72. Noctor, G., Mhamdi, A., and Foyer, C.H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164, 1636-1648. https://doi.org/10.1104/pp.113.233478
  73. Oh, S.-J., Song, S.I., Kim, Y.S., Jang, H.-J., Kim, S.Y., Kim, M., Kim, Y.-K., Nahm, B.H., and Kim, J.-K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138, 341-351. https://doi.org/10.1104/pp.104.059147
  74. Oliveros, J.C. (2007). VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.
  75. Orozco-Cardenas, M., and Ryan, C.A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96, 6553-6557. https://doi.org/10.1073/pnas.96.11.6553
  76. Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L.-S.P. (2014). Response of plants to water stress. Front. Plant Scie. 5, 86.
  77. Ouyang, S.Q., Liu, Y.F., Liu, P., Lei, G., He, S.J., Ma, B., Zhang, W.K., Zhang, J.S., and Chen, S.Y. (2010). Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 62, 316-329. https://doi.org/10.1111/j.1365-313X.2010.04146.x
  78. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200. https://doi.org/10.1038/35012103
  79. Peltzer, D., Dreyer, E., and Polle, A. (2002). Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiol. Biochem. 40, 141-150. https://doi.org/10.1016/S0981-9428(01)01352-3
  80. Peng, L.-T., Shi, Z.-Y., Li, L., Shen, G.-Z., and Zhang, J.-L. (2007). Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem. Biophys. Res. Commun. 360, 251-256. https://doi.org/10.1016/j.bbrc.2007.06.041
  81. Petrov, V.D., and Van Breusegem, F. (2012). Hydrogen peroxide-a central hub for information flow in plant cells. AoB plants 2012.
  82. Reddy, A.R., Ramakrishna, W., Sekhar, A.C., Ithal, N., Babu, P.R., Bonaldo, M., Soares, M., and Bennetzen, J.L. (2002). Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. indica cv. Nagina 22). Genome 45, 204-211. https://doi.org/10.1139/g01-114
  83. Riboni, M., Galbiati, M., Tonelli, C., and Conti, L. (2013). GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant Physiol. 162, 1706-1719. https://doi.org/10.1104/pp.113.217729
  84. Rubio, S., Rodrigues, A., Saez, A., Dizon, M.B., Galle, A., Kim, T.-H., Santiago, J., Flexas, J., Schroeder, J.I., and Rodriguez, P.L. (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol. 150, 1345-1355. https://doi.org/10.1104/pp.109.137174
  85. Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  86. Santino, C.G., Stanford, G.L., and Conner, T.W. (1997). Developmental and transgenic analysis of two tomato fruit enhanced genes. Plant Mol. Biol. 33, 405-416. https://doi.org/10.1023/A:1005738910743
  87. Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Kröber, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898-912. https://doi.org/10.1101/gad.373506
  88. Sharma, R., De Vleesschauwer, D., Sharma, M.K., and Ronald, P.C. (2013). Recent advances in dissecting stress-regulatory crosstalk in rice. Mol. Plant 6, 250-260. https://doi.org/10.1093/mp/sss147
  89. Shimizu, R., Ji, J., Kelsey, E., Ohtsu, K., Schnable, P.S., and Scanlon, M.J. (2009). Tissue specificity and evolution of meristematic WOX3 function. Plant Physiol. 149, 841-850.
  90. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217-223. https://doi.org/10.1016/S1369-5266(00)00067-4
  91. Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1-25.
  92. Song, S., Qi, T., Huang, H., Ren, Q., Wu, D., Chang, C., Peng, W., Liu, Y., Peng, J., and Xie, D. (2011). The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23, 1000-1013. https://doi.org/10.1105/tpc.111.083089
  93. Supek, F., Bosnjak, M., Skunca, N., and Smuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6, e21800. https://doi.org/10.1371/journal.pone.0021800
  94. Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036. https://doi.org/10.1126/science.1141753
  95. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  96. Tian, X.H., Li, X.P., Zhou, H.L., Zhang, J.S., Gong, Z.Z., and Chen, S.Y. (2005). OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. J. Int. Plant Biol. 47, 467-476. https://doi.org/10.1111/j.1744-7909.2005.00028.x
  97. Todaka, D., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2015). Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci. 6, 84.
  98. Torres, M.A., and Dangl, J.L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8, 397-403. https://doi.org/10.1016/j.pbi.2005.05.014
  99. Tsuchiya, T., Toriyama, K., Nasrallah, M.E., and Ejiri, S.-i. (1992). Isolation of genes abundantly expressed in rice anthers at the microspore stage. Plant Mol. Biol. 20, 1189-1193. https://doi.org/10.1007/BF00028907
  100. Tsuji, H., Taoka, K.-i., and Shimamoto, K. (2013). Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr. Opin. Plant Biol. 16, 228-235. https://doi.org/10.1016/j.pbi.2013.01.005
  101. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006. https://doi.org/10.1126/science.1091761
  102. van der Graaff, E., Laux, T., and Rensing, S.A. (2009). The WUS homeobox-containing (WOX) protein family. Genome Biol. 10, 248. https://doi.org/10.1186/gb-2009-10-12-248
  103. Voesenek, L., and Bailey-Serres, J. (2013). Flooding tolerance: O2 sensing and survival strategies. Curr. Opin. Plant Biol. 16, 647-653. https://doi.org/10.1016/j.pbi.2013.06.008
  104. Wada, K.C., Kondo, H., and Takeno, K. (2010). Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions. Physiol. Plant 138, 339-345. https://doi.org/10.1111/j.1399-3054.2009.01337.x
  105. Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., and Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67, 589-602. https://doi.org/10.1007/s11103-008-9340-6
  106. Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H., and Wan, J. (2010). DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153, 1747-1758. https://doi.org/10.1104/pp.110.156943
  107. Wopereis, M., Kropff, M., Maligaya, A., and Tuong, T. (1996). Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Res. 46, 21-39. https://doi.org/10.1016/0378-4290(95)00084-4
  108. Xiao, J., Cheng, H., Li, X., Xiao, J., Xu, C., and Wang, S. (2013). Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol. 163, 1868-1882. https://doi.org/10.1104/pp.113.226019
  109. Xu, J., Lafitte, H., Gao, Y., Fu, B., Torres, R., and Li, Z. (2005). QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theoretical Appl. Genet. 111, 1642-1650. https://doi.org/10.1007/s00122-005-0099-8
  110. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705. https://doi.org/10.1038/nature04920
  111. Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., and Li, X. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761. https://doi.org/10.1038/ng.143
  112. Yu, L., Chen, X., Wang, Z., Wang, S., Wang, Y., Zhu, Q., Li, S., and Xiang, C. (2013). Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol. 162, 1378-1391. https://doi.org/10.1104/pp.113.217596
  113. Yun, D., Liang, W., Dreni, L., Yin, C., Zhou, Z., Kater, M.M., and Zhang, D. (2013). OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol. Plant 6, 743-756. https://doi.org/10.1093/mp/sst003
  114. Zhang, D., Liang, W., Yin, C., Zong, J., Gu, F., and Zhang, D. (2010a). OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol. 154, 149-162. https://doi.org/10.1104/pp.110.158865
  115. Zhang, X., Zong, J., Liu, J., Yin, J., and Zhang, D. (2010b). Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J. Int. Plant Biol. 52, 1016-1026. https://doi.org/10.1111/j.1744-7909.2010.00982.x
  116. Zhang, C., Liu, J., Zhao, T., Gomez, A., Li, C., Yu, C., Li, H., Lin, J., Yang, Y., and Liu, B. (2016). A drought-inducible bZIP transcription factor OsABF1 delays reproductive timing in rice. Plant Physiol. 171, 334-343. https://doi.org/10.1104/pp.16.01691
  117. Zhou, S., Jiang, W., Long, F., Cheng, S., Yang, W., Zhao, Y., and Zhou, D.-X. (2017). Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell 29, 1088-1104. https://doi.org/10.1105/tpc.16.00908
  118. Zuckerkandl, E., and Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving genes and proteins (Elsevier), pp. 97-166.

Cited by

  1. Quantitative Trait Locus Analysis of Leaf Morphology Indicates Conserved Shape Loci in Grapevine vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.01373
  2. Importance of the Interaction between Heading Date Genes Hd1 and Ghd7 for Controlling Yield Traits in Rice vol.20, pp.3, 2018, https://doi.org/10.3390/ijms20030516
  3. Characterization of JsWOX1 and JsWOX4 during Callus and Root Induction in the Shrub Species Jasminum sambac vol.8, pp.4, 2019, https://doi.org/10.3390/plants8040079
  4. Zinc-α2-glycoprotein 1 attenuates non-alcoholic fatty liver disease by negatively regulating tumour necrosis factor-α vol.25, pp.36, 2019, https://doi.org/10.3748/wjg.v25.i36.5451
  5. Unraveling the Genetic Elements Involved in Shoot and Root Growth Regulation by Jasmonate in Rice Using a Genome-Wide Association Study vol.12, pp.1, 2018, https://doi.org/10.1186/s12284-019-0327-5
  6. Genome-Wide Identification of the Physic Nut WUSCHEL-Related Homeobox Gene Family and Functional Analysis of the Abiotic Stress Responsive Gene JcWOX5 vol.11, pp.None, 2018, https://doi.org/10.3389/fgene.2020.00670
  7. Transcriptome Analysis Revealed GhWOX4 Intercedes Myriad Regulatory Pathways to Modulate Drought Tolerance and Vascular Growth in Cotton vol.22, pp.2, 2018, https://doi.org/10.3390/ijms22020898
  8. Rice protein-binding microarrays: a tool to detect cis-acting elements near promoter regions in rice vol.253, pp.2, 2021, https://doi.org/10.1007/s00425-021-03572-w
  9. Transcriptional and post‐transcriptional regulation of heading date in rice vol.230, pp.3, 2018, https://doi.org/10.1111/nph.17158
  10. What Does the WOX Say? Review of Regulators, Targets, Partners vol.55, pp.3, 2018, https://doi.org/10.1134/s002689332102031x
  11. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094919
  12. Improving drought tolerance in rice: Ensuring food security through multi‐dimensional approaches vol.172, pp.2, 2021, https://doi.org/10.1111/ppl.13223
  13. Genome-wide identification and characterization of WOX genes in Cucumis sativus vol.64, pp.8, 2021, https://doi.org/10.1139/gen-2020-0029
  14. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis vol.21, pp.1, 2018, https://doi.org/10.1186/s12870-021-03180-6