• Title/Summary/Keyword: OPTIMAL RANGE

Search Result 2,686, Processing Time 0.023 seconds

Optimal Design of 70GHz Band Array Antenna for Short-Range Radar Sensor using The Chebyshev Polynomials (Chebyshev 다항식을 이용한 70GHz 대역 근거리 레이다 센서용 배열안테나의 최적설계)

  • Gue-Chol Kim;Joo-Suk Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • This paper presents a procedure to optimize the design of 70GHz band array antenna for automotive short range radar sensor applications using Chebyshev polynomials. SRR(: Short Range Radar) systems require a wide angle width and low Side lobe level to detect targets within close proximity while ensuring a high Field of View(FoV). The optimized antenna operates in the 76 to 81GHz frequency range, and to reduce the antenna size, we arranged 12 patches in series, achieving an SLL of 10dB, angle with of 112.5o, gain of 15.4dB and an input return loss of less than -10dB at 78GHz. In this paper, we proceed with antenna design for SRR using Chebyshev polynomials, and present an optimal design for antenna structures to be used in MRR(: Medium-Range Radar) and LRR(: Long Range Radar) applications based on this paper

Optimal Cutting Condition of Rough Cutting Using Trochoidal Motion (Trochoidal 방식을 이용한 황삭가공의 최적조건)

  • Bong, Ha Yoon;Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • In modern industry, the machining process is very important for manufacturing various products. More than 80% of machining processes apply rough cutting. The target of this study is to establish the optimal condition of rough cutting using trochoidal motion for improving productivity. For research, the range of cutting conditions is defined by trochoidal motion. The cutting time and tolerance are measured and evaluated according to the cutting conditions of machining. Experimental data are utilized for comparing trochoidal motion and contouring. It is found that the cutting time of trochoidal motion is two times less than that of contouring with optimal cutting conditions. To conclude, trochoidal motion for rough cutting under appropriate cutting conditions improves productivity and shortens processing time significantly.

Development of an operation and control software for electro-hydraulic (전자유압식 CVT의 운용 및 제어 소프트웨어 개발과 실시간 제어)

  • Kwan, H. B.;Kim, K. W.;Kim, H. S.;Eun, T.;Park, C. I
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • In CVT vehicle, the engine speed is completely decoupled from the vehicle speed within the range from maximum transmission ratio to minimum transmission ratio. This allows the engine to operate in optimal state(e.g. best fuel economy or maximum power mode.) In this study, the CVT control algorithm for optimal operation of engine is suggested. In order to implement the real time digital control of electro-hydraulic CVT system, a software called CVTCON has been developed. CVTCON also includes the CVT operation module, (2) system test module, (3) system control module and (4) data management module. By using the CVTCON and the electro-hydraulic CVT system, two modes of experiments were carried out: constant throttle opening mode and acceleration mode. From the experimental result, it was found that the algorithm suggested in this study showed optimal operation of the CVT system.

  • PDF

A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate (중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구)

  • 최연왕;정문영;임흥빈;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

Optimal Design of Accelerated Life Tests with Different Censoring Times

  • Seo, Sun-Keun;Kim, Kab-Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.44-58
    • /
    • 1996
  • This paper presents optimal accelerated life test plans with different censoring times for exponential, Weibull, and lognormal lifetime distributions, respectively. For an optimal plan, low stress level, proportion of test units allocated and censoring time at each stress are determined such that the asymptotic variance of the maximum likelihood estimator of a certain quantile at use condition is minimized. The proposed plans are compared with the corresponding optimal plans with a common censoring time over range of parameter values. Computational results indicate that those plans are statistically optimal ones in terms of accuracy of estimator when total censoring times of two plans are equal.

  • PDF

Optimal Design of Process-Inventory Network Considering Backordering Costs (역주문을 고려한 공정-저장조 망구조의 최적설계)

  • Yi, Gyeongbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.750-755
    • /
    • 2014
  • Product shortage which causes backordering and/or lost sales cost is very popular in chemical industries, especially in commodity polymer business. This study deals with backordering cost in the supply chain optimization model under the framework of process-inventory network. Classical economic order quantity model with backordering cost suggested optimal time delay and lot size of the final product delivery. Backordering can be compensated by advancing production/transportation of it or purchasing substitute product from third party as well as product delivery delay in supply chain network. Optimal solutions considering all means to recover shortage are more complicated than the classical one. We found three different solutions depending on parametric range and variable bounds. Optimal capacity of production/transportation processes associated with the product in backordering can be different from that when the product is not in backordering. The product shipping cycle time computed in this study was smaller than that optimized by the classical EOQ model.

The Study on Optimal PWM for 3 Phase Induction Motor Drive (3상 유도전동기의 운전을 위한 Optimal PWM에 관한 연구)

  • 이윤종;서기영;정동화
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.368-375
    • /
    • 1985
  • This paper describes the OPTIMAL PWM strategy to reduce harmonic losses for a variaboe-speed drive of an induction motor. This OPTIMAL theory is the strategy which can reduce motor losses by defining harmonic losses as a performance index and achieving it's minimization. This PWM strategy is compared with the conventional NATURAL PWM technique by a numerical method, and verified the validity of numerical method by a result of implementing in a practical 1 Hp-3 Phase induction motor drive system. Also, we could achieve a maximum efficiency to drive an induction motor by selecting appropriately one alternative between OPTIMAL and NATURAL PWM techniques, and employing it in a full driving range.

  • PDF

Aerodynamic Shape Design Method for Wing Planform Using Metamodel (근사모델을 이용한 날개 평면형상 공력형상설계 방법)

  • Bae, Hyogil;Jeong, Sora
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

How to Avoid Graft-Tunnel Length Mismatch in Modified Transtibial Technique for Anterior Cruciate Ligament Reconstruction Using Bone-Patellar Tendon-Bone Graft

  • Ko, Dukhwan;Kim, Hyeung-June;Oh, Seong-Hak;Kim, Byung-June;Kim, Sung-Jae
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.407-412
    • /
    • 2018
  • Background: We conducted this study to determine the optimal length of patellar and tibial bone blocks for the modified transtibial (TT) technique in anterior cruciate ligament (ACL) reconstruction using the bone-patellar tendon-bone (BPTB) graft. Methods: The current single-center, retrospective study was conducted in a total of 64 patients with an ACL tear who underwent surgery at our medical institution between March 2015 and February 2016. After harvesting the BPTB graft, we measured its length and that of the patellar tendon, patellar bone block, and tibial bone block using the arthroscopic ruler and double-checked measurements using a length gauge. Outcome measures included the length of tibial and femoral tunnels, inter-tunnel distance, length of the BPTB graft, patellar tendon, patellar bone block, and tibial bone block and graft-tunnel length mismatch. The total length of tunnels was defined as the sum of the length of the tibial tunnel, inter-tunnel distance and length of the femoral tunnel. Furthermore, the optimal length of the bone block was calculated as (the total length of tunnels - the length of the patellar tendon) / 2. We analyzed correlations of outcome measures with the height and body mass index of the patients. Results: There were 44 males (68.7%) and 20 females (31.3%) with a mean age of 31.8 years (range, 17 to 65 years). ACL reconstruction was performed on the left knee in 34 patients (53%) and on the right knee in 30 patients (47%). The optimal length of bone block was 21.7 mm (range, 19.5 to 23.5 mm). When the length of femoral tunnel was assumed as 25 mm and 30 mm, the optimal length of bone block was calculated as 19.6 mm (range, 17 to 21.5 mm) and 22.1 mm (range, 19.5 to 24 mm), respectively. On linear regression analysis, patients' height had a significant correlation with the length of tibial tunnel (p = 0.003), inter-tunnel distance (p = 0.014), and length of patellar tendon (p < 0.001). Conclusions: Our results indicate that it would be mandatory to determine the optimal length of tibial tunnel in the modified TT technique for ACL reconstruction using the BPTB graft. Further large-scale, multi-center studies are warranted to establish our results.