• Title/Summary/Keyword: OPTIMAL RANGE

Search Result 2,698, Processing Time 0.031 seconds

AN APPROACH FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS

  • Basirzadeh, H.;Kamyad, A.V.;Effati, S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.717-730
    • /
    • 2002
  • In this paper we use measure theory to solve a wide range of the nonlinear programming problems. First, we transform a nonlinear programming problem to a classical optimal control problem with no restriction on states and controls. The new problem is modified into one consisting of the minimization of a special linear functional over a set of Radon measures; then we obtain an optimal measure corresponding to functional problem which is then approximated by a finite combination of atomic measures and the problem converted approximately to a finite-dimensional linear programming. Then by the solution of the linear programming problem we obtain the approximate optimal control and then, by the solution of the latter problem we obtain an approximate solution for the original problem. Furthermore, we obtain the path from the initial point to the admissible solution.

Performance bounds of optimal FIR filter-under modeling uncertainty (모델 불확실성에 대한 초적 FIR 필터의 성능한계)

  • 유경상;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.64-69
    • /
    • 1993
  • In this paper we present the performance bounds of the optimal FIR filter in continuous time systems with modeling uncertainty. The performance measure bounds are calculated from the estimation error covariance bounds of the optimal FIR filter and the suboptimal FIR filter. Performance error bounds range are expressed by the upper bounds on the estimation error covariance difference between the real and nominal values in case of the systems with noise uncertainty or model uncertainty. The performance bounds of the systems are derived on the assumption that the system uncertainty and the estimation error covariance are imperfectly known a priori. The estimation error bounds of the optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the estimation of the motion of an aircraft carrier at sea, which shows the former has better performances than the latter.

  • PDF

FEA-Based Optimal Design of Permanent Magnet DC Motor Using Internet Distributed Computing

  • Lee, Cheol-Gyun;Choi, Hong-Soon
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2009
  • The computation time of FEA(finite element analysis) for one model may range from a few seconds up to several hours according to the complexity of the simulated model. If these FEA is used to calculate the objective and the constraint functions during the optimal solution search, it causes very excessive execution time. To resolve this problem, the distributed computing technique using internet web service is proposed in this paper. And the dynamic load balancing mechanisms are established to advance the performance of distributed computing. To verify its validity, this method is applied to a traditional mathematical optimization problem. And the proposed FEA-based optimization using internet distributed computing is applied to the optimal design of the permanent magnet dc motor(PMDCM) for automotive application.

  • PDF

An Optimal Design of an ER-SFD Supporting a Rigid Rotor System (강성 회전축계를 지지한 전기 유변 유체 스퀴즈 필름 댐퍼의 최적설계)

  • 이용복;김종립;이남수;김창호;최동훈
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.216-220
    • /
    • 2001
  • This paper presents a parametric study and an optimal design of the ER-SFD supporting a rigid rotor system. An attempt is made to obtain the optimal design of an ER-SFD for a two degree-of-freedom rotor model. Such a simple model is used in order to get a better insight into the physics of the problem. A maximum whirl amplitude, supply pressure and voltage are considered, and a maximum whirl amplitude is minimized over a range of speeds and presented f3r some values of unbalance mass. The results presented in this paper provide important design information necessary to reduce a whirl amplitude of an ER-SFD.

SOLVING A SYSTEM OF THE NONLINEAR EQUATIONS BY ITERATIVE DYNAMIC PROGRAMMING

  • Effati, S.;Roohparvar, H.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.399-409
    • /
    • 2007
  • In this paper we use iterative dynamic programming in the discrete case to solve a wide range of the nonlinear equations systems. First, by defining an error function, we transform the problem to an optimal control problem in discrete case. In using iterative dynamic programming to solve optimal control problems up to now, we have broken up the problem into a number of stages and assumed that the performance index could always be expressed explicitly in terms of the state variables at the last stage. This provided a scheme where we could proceed backwards in a systematic way, carrying out optimization at each stage. Suppose that the performance index can not be expressed in terms of the variables at the last stage only. In other words, suppose the performance index is also a function of controls and variables at the other stages. Then we have a nonseparable optimal control problem. Furthermore, we obtain the path from the initial point up to the approximate solution.

Solid-liquid Separation of Swine Wastewater using Bentonite (벤토나이트를 이용한 양돈 폐수의 고액분리)

  • Yim, Je-Hyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.742-747
    • /
    • 2004
  • Solid-liquid separation of swine wastewater was conducted using bentonite as coagulant. During the separation experiment, coagulation efficiency was also investigated. To determine optimal bentonite dose, 0.1, 0.2, 0.4, 0.8, and 1.6% (w/v basis) of bentonite was dosed. Suspended solid removal efficiency was 87-98% at whole bentonite dosage. But sediment volume was increased, and settling velocity was decreased at excessive bentonite dosage. Therefore optimal bentonite dosage was evaluated around 0.2-0.4%. In the test to determine optimal pH, coagulation using bentonite was performed at pH 3, 4, 5, 6, and 7. At lower pH suspended solid removal efficiency was increased. However, sediment volume was also increased and phosphorus release was observed. Thereby optimal pH for bentonite coagulation might be appeared in the range of 6-7.

The Robust Parameter Design of Multiple Characteristics with Multiple Objective and Subjective Attributes (다수의 주관적 요소와 객관적 요소를 고려한 다특성치 강건설계)

  • 조용욱;박명규
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.251-254
    • /
    • 2000
  • The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this study, First, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. Second, to solve the issue on the optimal design for multiple quality characteristics, this study modelled the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms. The model will be used to determine the global optimal design parameters where there exists the conflict among the characteristics, which shows difference in optimal design parameters for the individual characteristics. Third, this paper propose a decision model to incorporates the values assigned by a group of experts on different factors in weighting decision of characteristic. Using this model, SN ratio of taguchi method for each of subjective factors as well as values of weights are used in this comprehensive method for weighting decision of characteristic.

  • PDF

Time-dependent Optimal Heater Control in Thermoforming Preheating Using Dual Optimization Steps

  • Li, Zhen-Zhe;Heo, Kwang-Su;Seol, Seoung-Yun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.51-56
    • /
    • 2008
  • Thermoforming is one of the most versatile and economical processes available for shaping polymer products, but obtaining a uniform thickness of the final product using this method is difficult. Heater power adjustment is very important because the thickness distribution depends strongly on the distribution of the sheet temperature. In this paper, the steady-state optimum distribution of heater power is first ascertained by a numerical optimization to obtain a uniform sheet temperature. The time-dependent optimal heater input is then determined to decrease the temperature difference through the direction of the thickness using the response surface method and the D-optimal method. The optimal results show that the time-dependent optimum heater power distribution gives an acceptable uniform sheet temperature in the forming temperature range by the end of the heating process.

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

A study on the determination of an optimal handle diameter for a signal billy (신호봉 손잡이의 최적 굵기 결정에 관한 연구)

  • 변승남;이동훈
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.15-27
    • /
    • 1997
  • The objectives of this study were twofold; (1) to determine an optimal handle size of a signal billy, based on the subjective assessment of grip comfort and (2) to investigate the relationship between hand anthropometry and the optimal handle size. Thirty-seven university male students were asked to rate seven cylindrical handles of different diameters in barehanded and gloved conditions, respectively. Among these handles, 3.5cm diameter of the handle size was found to be the most comfortable, in both bardhanded and gloved conditionsl. However, no statistically significant reduction in grip comfort occurred within handle diameter ranging from 2.5cm to 4.0cm. As the handle diameter was deivated from the range, grip discomfort in creased significantly. A Spearman rank correlation coefficient test revealed that hand anthropometries such as finger lengths, hand circumference, and hand thickness were statistically significant factors on the determination of the optimal handle size. The implications of these findings were discussed. The results of this study can be used as guidelines in designing the hand tools for power grip.

  • PDF