• Title/Summary/Keyword: OPR1000

Search Result 88, Processing Time 0.023 seconds

Sensitivity Analyses for Failure Probabilities of the OPR1000 Reactor Vessel Under Pressurized Thermal Shock (가압열충격에 의한 OPR1000 원자로용기의 파손확률 민감도 해석)

  • Oh, Changsik;Jhung, Myung Jo;Choi, Youngin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.40-49
    • /
    • 2019
  • In this paper, failure probabilities of the OPR1000 reactor vessel under pressurized thermal shock (PTS) were estimated using the probabilistic fracture mechanics code, R-PIE. Input variables of initial crack distribution, crack size, copper contents, and upper shelf toughness were selected for the sensitivity analyses. A wide range of the input data were considered. Through-wall cracking frequencies determined by the product of the vessel failure probability and the corresponding occurrence frequency of the transient were also compared to the acceptance criterion. The results showed that transient history had the most significant impact on the vessel failure probability. Moreover, conservative assumptions resulted in extremely high through-wall cracking frequencies.

Loading pattern design and economic evaluation for 24-month cycle operation of OPR-1000 in Korea

  • Jeongmin Lee;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1167-1180
    • /
    • 2023
  • Due to the tightened regulatory environment since the Fukushima accident, the capacity factor of Korean nuclear power plants has been declining since 2011. To overcome this circumstance, a shift from 18-month to 24-month cycle operation is being considered in Korea. Therefore, in this study, loading patterns(LPs) for 24-month cycle operation of the Korean standard nuclear power plant(OPR-1000) are suggested and economic evaluations are performed. A single-zone LP with 89 fresh fuels was evaluated to be optimal for 24-month operation of OPR-1000 in terms of economic gain. The 24-month operation of OPR-1000 with this LP gives a profit of 7.073 million dollars per year compared to 18-month operation.

A Study on Applicability of Stainless Steel Type 316N to the PZR Surge-line of OPR1000 and APR1400 (Type 316N 스테인리스강의 OPR1000 및 APR1400 가압기 밀림관 적용성에 대한 연구)

  • Yoo, One;Jung, Sung-Hoon;Park, Sung-Ho;Sohn, Gap-Heon;Lee, Bong-Sang;Kim, Min-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.287-292
    • /
    • 2008
  • The applicability of stainless steel type 316N to the PZR surge-lines of OPR1000 and APR1400 is investigated. So far, strainless steel type 347 has been used for the OPR1000 surge-lines. The degree of improvement in the leak-before-break(LBB) and component design margin is evaluated when stainless steel type 347 is substituted by type 316N. For the study, the tensile and J-R tests on type 316N and type 347 stainless steels were performed at 316 and the microstructure of both types was examined. Stainless steel type 316N shows the higher values on the stress-strain curves, J-R curves and stress intensity, Sm, compared to those of type 347. Therefore, stainless steel type 316N ensures the higher LBB and component design margins. As a result, this study shows that stainless steel type 316N could substitute type 347 for the surge-lines of OPR1000 and APR1400.

  • PDF

A Reduced-Boron OPR1000 Core Based on the BigT Burnable Absorber

  • Yu, Hwanyeal;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.318-329
    • /
    • 2016
  • Reducing critical boron concentration in a commercial pressurized water reactor core offers many advantages in view of safety and economics. This paper presents a preliminary investigation of a reduced-boron pressurized water reactor core to achieve a clearly negative moderator temperature coefficient at hot zero power using the newly-proposed "Burnable absorber-Integrated Guide Thimble" (BigT) absorbers. The reference core is based on a commercial OPR1000 equilibrium configuration. The reduced-boron ORP1000 configuration was determined by simply replacing commercial gadolinia-based burnable absorbers with the optimized BigT-loaded design. The equilibrium cores in this study were directly searched via repetitive Monte Carlo depletion calculations until convergence. The results demonstrate that, with the same fuel management scheme as in the reference core, application of the BigT absorbers can effectively reduce the critical boron concentration at the beginning of cycle by about 65 ppm. More crucially, the analyses indicate promising potential of the reduced-boron OPR1000 core with the BigT absorbers, as its moderator temperature coefficient at the beginning of cycle is clearly more negative and all other vital neutronic parameters are within practical safety limits. All simulations were completed using the Monte Carlo Serpent code with the ENDF/B-VII.0 library.

Effects of house load operation on PSA based on operational experiences in Korea

  • Lim, Hak Kyu;Park, Jong-hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2812-2820
    • /
    • 2020
  • House load operation (HLO) occurs when the generator supplies power to the house load without triggering reactor trips during grid disturbances. In Korea, the HLO capability of optimized power reactor 1000 (OPR1000) plants has prevented several reactor trips. Operational experiences demonstrate the difference in the reactor trip incidence due to grid disturbances between OPR1000 plants and Westinghouse plants in Korea, attributable to the availability of the HLO capability. However, probabilistic safety assessments (PSAs) for OPR1000 plants have not considered their specific design features in the initiating event analyses. In an at-power PSA, the HLO capability can affect the initiating event frequencies of general transients (GTRN) and loss of offsite power (LOOP), resulting from transients within the grid system. The initiating event frequencies of GTRN and LOOP for an OPR1000 plant are reduced by 17.7% and 78.7%, respectively, compared to the Korean industry-average initiating event frequencies, and its core damage frequency from internal events is reduced by 15.2%. The explicit consideration of the HLO capability in initiating event analyses makes significant changes in the risk contributions of the initiating events. Consequently, for more realistic at-power PSAs in Korea, we recommend incorporating plant-specific HLO-related design features when estimating initiating event frequencies.

Performance evaluation of an improved pool scrubbing system for thermally-induced steam generator tube rupture accident in OPR1000

  • Juhyeong Lee;Byeonghee Lee;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1513-1525
    • /
    • 2024
  • An improved mitigation system for thermally-induced steam generator tube rupture accidents was introduced to prevent direct environmental release of fission products bypassing the containment in the OPR1000. This involves injecting bypassed steam into the containment, cooling, and decontaminating it using a water coolant tank. To evaluate its performance, a severe accident analysis was performed using the MELCOR 2.2 code for OPR1000. Simulation results show that the proposed system sufficiently prevented the release of radioactive nuclides (RNs) into the environment via containment injection. The pool scrubbing system effectively decontaminated the injected RN and consequently reduced the aerosol mass in the containment atmosphere. However, the decay heat of the collected RNs causes re-vaporization. To restrict the re-vaporization, an external water source was considered, where the decontamination performance was significantly improved, and the RNs were effectively isolated. However, due to the continuous evaporation of the feed water caused by decay heat, a substantial amount of steam is released into the containment. Despite the slight pressurization inside the containment by the injected and evaporated steam, the steam decreased the hydrogen mole fraction, thereby reducing the possibility of ignition.

A Study on ODSCC of OPR 1000 Steam Generator Tube (OPR 1000 증기발생기 전열관의 ODSCC 고찰)

  • Suk, Dong Hwa;Oh, Chang Ha;Lee, Jae Woog
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.16-19
    • /
    • 2010
  • In this study, the axial ODSCC occurrence of domestic OPR 1000 steam generator tube was caused by the tube weakness and the sludge accumulation in the secondary side of steam generator. Inconel 600 HTMA used as tube material is related to most of tube leakage accidents in the world and also these ODSCCs were detected mainly at the 5th TSP(Tube Support Plate) to the 8th TSP of hot leg side. These elevations(5th TSP to 8th TSP) pave the way for the sludge accumulation. As a result of EC(Eddy Current) Bobbin and RPC data analysis, ODSCCs were occurred at contact points of tube and tube support plate. The more accumulated sludge, the higher occurrence frequency of ODSCC.

  • PDF

Environmental Fatigue Evaluation of APR1000 Reactor Vessel (APR1000 원자로용기의 환경피로 평가)

  • Kim, Jong Min;Kim, Yong Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • APR1000(Advanced Power Reactor 1000) was developed to export 1000MW nuclear power plants by adding ADFs(Advanced Design Features) including 60 years design life, local frequency control operation, 0.3g SSE, etc. to OPR1000(Optimized Power Reactor 1000). In this paper, environmental fatigue analyses for the reactor vessel in APR1000 have been performed as per Reg. Guide 1.207. Outlet nozzle, which has a relatively high cumulative usage factor in the reactor vessel was evaluated and a structural integrity is maintained under the reactor coolant environment.

Systems Engineering Approach to Reengineering of YGN 3&4 Safety Depressurization System Retrofit Design (영광3,4호기 안전감압계통 추가설비 설계최적화를 위한 시스템엔지니어링 적용연구)

  • Choi, Mun Won;Kim, Kyu Wan;Han, Ki In
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this paper is to present the results of reengineering of the YGN 3&4 (Yonggwang Nuclear Power Plant, Units 3&4) SDS (Safety Depressurization System) retrofit design and to make recommendations for the improvement in design and design procedure implementing the Systems Engineering (SE) process. YGN 3&4 is a basic model for OPR1000 (the Korean standard 1000 MWe plant). The basic model, herein, represents the reference plant for the OPR1000 development. In the middle of the YGN 3&4 construction, the Korean Nuclear Regulatory Body requested a retrofit of this plant with a means to rapidly depressurize the plant in conformance with a severe accident mitigation requirement. For the reengineering of the SDS in YGN 3&4, V-model and functional and physical architectures have been developed. A SE decision making method has been used for the selection of SDS valves. Finally, recommendations have been made to improve OPR1000 design for the improved operation and enhanced safety.