• Title/Summary/Keyword: OPC replacement

Search Result 147, Processing Time 0.025 seconds

Characteristic of Chloride Ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 염소이온 확산특성)

  • 문한영;김홍삼;김진철;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.793-796
    • /
    • 2001
  • Physical properties of concrete, Such as, compressive strength, permeable pore and penetration depth of chloride ion were investigated. And to investigate the effect of containing GGBF in concrete, the diffusion coefficient of chloride was measured through an electro- migration test. The diffusion coefficient of chloride was decreased with increase of replacement ratios of GGBF when compared to OPC. Relation coefficients between physical properties of concrete and diffusion coefficient of chloride were more than 0.9.

  • PDF

A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete (고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구)

  • 변근주;박성준;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

A Study on the Chloride ion Penetration Characteristic of Concrete containing Ground Granulated Blast Furnace Slag (고로슬래그미분말 치환 콘크리트의 염화물 침투특성에 관한 연구)

  • 김현수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.997-1002
    • /
    • 2001
  • There are two types of chloride in concrete; one is added as concrete materials' chloride when concrete's mixing, and .the other is penetrated from the air and sea water in the sea-shore area. These chlorides penetrate into concrete, and they are accumulated inside the concrete with aging. This study aimed to evaluate the chloride ion penetration resistance of concrete containing GGBFS in the sea-shore area. Therefore, the specimens made with the replacement ratios(0, 0.30, 0.45, 0.60) of GGBFS were put into 3% NaCl solution according to the chloride accelerating test of JCI-SC3, and then investigated the weight changes, compressive strength, chloride ion with the depths of the specimens by aging. The result is that the diffusion coefficient of chloride ion is decreased with the increase of replacement ratios when compared to OPC

  • PDF

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

Influence of High Fluidity Concrete on Segregation Resistance When Replacing Mineral Admixture (광물질 혼화재 치환이 고유동 콘크리트의 재료분리 저항성에 미치는 영향)

  • Lee, Hyuk-Ju;Lee, Young-Jun;Hyun, Seung-Yong;Han, In-Deok;Han, Dong-Yeop;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.139-140
    • /
    • 2019
  • In this study, we considered the influence on segregation resistance at the time of substitution of FA and BS, which are substance admixtures of high fluidity concrete. According to the research results, EIS, which is an index of segregation in high fluidity concrete replacement, showed a low value, and the composition also showed a higher value than OPC. Therefore, it is confirmed that the resistance to segregation at the time of admixture replacement of high fluidity concrete is improved.

  • PDF

Compaction Characteristic of Alkali Activated Slag-Red Mud Dry Pavement with Red Mud (레드머드 첨가에 따른 알칼리활성화 슬래그-레드머드 건식 흙포장재의 다짐 특성)

  • Kang, Hye Ju;Lee, Hu Seok;Hwang, Byuong Il;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.28-29
    • /
    • 2017
  • For this study, alkali-activated slag red-mud pavement is manufactured to examine the usability of red-mud as a recycling material in the construction industry. In the compaction curve in terms of the replacement ratio of red mud by binder type, the dry density changed gradually depending on the water content, which implies that there is no distinct difference in compaction according to the replacement ratio of red mud. The compressive strength at 28 days was observed to be 18.9~27.0MPa in ASS, and 18.4~28.8MPa in OPC, showing a similar level between the specimens.

  • PDF

Property of Strength Development on the Concrete with Coarse Particle Cement (굵은 입자 시멘트를 사용한 콘크리트의 강도발현 특성)

  • Noh, Sang-Kyun;Son, Ho-Jung;Baek, Dae-Hyun;Chung, Woung-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.89-91
    • /
    • 2011
  • This paper is to investigate experimentally the property of strength development on the concrete for 5 years according to the change of a replacement rate of coarse particle cement in order to use coarse particle cement with a fineness of 1 900 ㎠/g that is classified during a grinding process of the OPC production. The result is that as the CC replacement rate increased, the compressive strength was decreased proportionally. but the width of strength reduction was reduced as time passed.

  • PDF

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

Performance of one-part alkali activated recycled ceramic tile/fine soil binders

  • Mawlod, Arass Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • Performance of Sustainable materials continues through using of recycled waste construction materials to minimize the utilization of the natural resources. The cement industry is a major source of CO2 in the atmosphere which is the main cause of global warming. Replacement of OPC with other sustainable cementitious materials has been the most interesting area of researches. This investigation focuses on the properties of alkali-activated mortar with the different replacement ratios of ceramic tile powder (CTP) by fine soil powder (FSP) (0 to 100)% and different molarities of sodium hydroxide concentrations. The experimental program was conducted by examining the compressive strength, water absorption, and water sorptivity. The results showed that the compressive strength of the specimens at age of (28, 56, and 90 days) increases with an increase in the amount of fine soil powder content and decreases at the age of 120 days. Also, minimum water absorption at the age of 90 days was found in the mixes containing 100% fine soil powder. However, fine soil powder replacement had a negative effect on the sorptivity and water absorption values at the age of 120 days. On the other hand, the 12M sodium hydroxide concentration was considered the optimum concentration compared to other concentrations.

Properties of High Volume Blast Furnace Slag Concrete using Recycled Aggregate with Incineration Waste Ash (소각장애시의 치환에 따른 고로슬래그 미분말 다량치환 순환골재 콘크리트의 특성)

  • Han, Cheon-Goo;Lee, Hyang-Jae;Kim, Jun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study is the study desiring to solve the problem by utilizing the kinds of recycled resources considered to be troubled complementarily. Namely the reaction of potential hydraulicity of Blast Furnace Slag Powder (BS) shall be reacted with the alkali of Recycled Fine Aggregates Coarse Aggregate, it has been experimented to obtain the optimum value with the replacement ratio of incineration plant ash (WA) treated with the slaked lime as the experiment variable by solving the alkali of shortage with the Ordinary Portland Cement (OPC). As a result, the liquidity and the air volume are declined slightly as the replacement ratio of incineration plant ash WA increases, the mixture of incineration plant ash WA 1% has been analyzed to be the most suitable considering the viewpoint of effective handling of waste as the compression and the tensile strength showed the maximum value before and after 1% even though it was disadvantageous with the increase of chloride content.