• 제목/요약/키워드: ONO(Oxide-Nitride-Oxide) Threshold Voltage

Search Result 7, Processing Time 0.021 seconds

ONO Ruptures Caused by ONO Implantation in a SONOS Non-Volatile Memory Device

  • Kim, Sang-Yong;Kim, Il-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.16-19
    • /
    • 2011
  • The oxide-nitride-oxide (ONO) deposition process was added to the beginning of a 0.25 ${\mu}m$ embedded polysiliconoxide-nitride-oxide-silicon (SONOS) process before all of the logic well implantation processes in order to maintain the characteristics of basic CMOS(complementary metal-oxide semiconductor) logic technology. The system subsequently suffered severe ONO rupture failure. The damage was caused by the ONO implantation and was responsible for the ONO rupture failure in the embedded SONOS process. Furthermore, based on the experimental results as well as an implanted ion's energy loss model, processes primarily producing permanent displacement damages responsible for the ONO rupture failure were investigated for the embedded SONOS process.

The Analysis of Lateral Charge Migration at 3D-NAND Flash Memory by Tapering and Ferroelectric Polarization (Tapering과 Ferroelectric Polarization에 의한 3D NAND Flash Memory의 Lateral Charge Migration 분석)

  • Lee, Jaewoo;Lee, Jongwon;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.770-773
    • /
    • 2021
  • In this paper, the retention characteristics of 3D NAND flash memory applied with tapering and ferroelectric (HfO2) structure were analyzed after programming operation. Electrons trapped in nitride are affected by lateral charge migration over time. It was confirmed that more lateral charge migration occurred in the channel thickened by tapering of the trapped electrons. In addition, the Oxide-Nitride-Ferroelectric (ONF) structure has better lateral charge migration due to polarization, so the change in threshold voltage (Vth) is reduced compared to the Oxide-Nitride-Oxide (ONO) structure.

Analysis on the Characteristics of NVM Device using ELA on Glass Substrate (ELA 기판을 사용한 NVM 소자의 전기적 특성 분석)

  • Oh, Chang-Gun;Lee, Jeoung-In;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.149-150
    • /
    • 2007
  • ONO(Oxide-Nitride-Oxide)구조는 기억소자의 전하보유 능력을 향상시키기 위해 도입된 게이트 절연막이다. 본 연구에서는 ELA(Excimer Laser Annealing)방법으로 비정질 실리콘을 결정화 시켜서 그 위에 NVM(Nonvolatile Memory)소자를 만들어 전기적 특성을 측정하여 결과를 나타내었다. 실험 결과 같은 크기의 $V_D$에서 $V_G$를 조절함으로써 $I_D$의 크기를 조절할 수 있었다. $V_G-I_D$ Graph에서는 $I_{on}$$I_{off}$, 그리고 Threshold Voltage를 알 수 있었다. $I_{on}/I_{off}$ Ratio는 $10^3-10^4$이다. $V_G-I_D$ Graph에서는 게이트에 인가하는 Bias의 양을 통해서 Threshold Voltage의 크기를 조절할 수 있었다. 이는 Trap되는 Charge의 양을 임의로 조절할 수 있다는 것을 의미하며, 이러한 Programming과 Erasing의 특성을 이용하여 기억소자로서의 역할을 수행하게 된다.

  • PDF

Study of the New Structure of Inter-Poly Dielectric Film of Flash EEPROM (Flash EEPROM의 Inter-Poly Dielectric 막의 새로운 구조에 관한 연구)

  • Shin, Bong-Jo;Park, Keun-Hyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.9-16
    • /
    • 1999
  • When the conventional IPD (inter-poly-dielctrics) layer with ONO(oxide-nitride-oxide) structure was used in the Flash EEPROM cell, its data retention characteristics were significanfly degraded because the top oxide of the ONO layer was etched off due to the cleaning process used in the gate oxidation process for the peripheral MOSFETs. When the IPD layer with the ONON(oxide-nitride-oxide-nitride) was used there, however, its data retention characteristics were much improved because the top nitride of the ONON layer protected the top oxide from being etched in the cleaning process. For the modelling of the data retention characteristics of the Flash EEPROM cell with the ONON IPD layer, the decrease of the threshold voltage cue to the charge loss during the bake was here given by the empirical relation ${\Delta}V_t\; = \;{\beta}t^me^{-ea/kT}$ and the values of the ${\beta}$=184.7, m=0.224, Ea=0.31 eV were obtained with the experimental measurements. The activation energy of 0.31eV implies that the decrease of the threshold voltage by the back was dur to the movement of the trapped electrons inside the inter-oxide nitride layer. On the other hand, the results of the computer simulation using the model were found to be well consistent with the results of the electrical measurements when the thermal budget of the bake was not high. However, the latter was larger then the former in the case of the high thermal budger, This seems to be due to the leakage current generated by the extraction of the electrons with the bake which were injected into the inter-oxide niride later and were trapped there during the programming, and played the role to prevent the leakage current. To prevent the generation of the leakage current, it is required that the inter-oxide nitride layer and the top oxide layer be made as thin and as thick as possible, respectively.

  • PDF

The NAND Type Flash EEPROM using the Scaled SCNOSFET (Scaled SONOSFET를 이용한 NAND형 Flash EEPROM)

  • Kim, Ju-Yeon;Kim, Byeong-Cheol;Kim, Seon-Ju;Seo, Gwang-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The SNOSFET memory devices with ultrathin ONO(tunnel oxide-nitride-blocking oxide) gate dielectric were fabricated using n-well CMOS process and investigated its characteristics. The thicknesses of tunnel oxide, nitride and blocking oxide were $23{\AA},\; 53{\AA}\; and\; 33{\AA}$, respectively. Auger analysis shows that the ONO layer is made up of $SiO_2(upper layer of blocking oxide)/O-rich\; SiO_x\N\_y$. It clearly shows that the converting layer with $SiO_x\N\_y(lower layer of blocking oxide)/N-rich SiO_x\N\_y(nitride)/O-rich SiO_x\N\_y(tunnel oxide)$. It clearly shows that the converting layer with $SiO_x\N\_y$ phase exists near the interface between the blocking oxide and nitride. The programming condition of +8 V, 20 ms, -8 V, 50 ms is determined and data retention over 10 years is obtained. Under the condition of 8 V programming, it was confirmed that the modified Fowler-Nordheim tunneling id dominant charge transport mechanism. The programmed threshold voltage is distributed less than 0.1 V so that the reading error of memory stated can be minimized. An $8\times8$ NAND type flash EEPROM with SONOSFET memory cell was designed and simulated with the extracted SPICE parameters. The sufficient read cell current was obtained and the upper limit of $V_{TH}$ for write state was over 2V.

  • PDF

Electrical Characteristics of NVM Devices Using SPC Substrate (SPC 기판을 사용한 NVM 소자의 전기적 특성)

  • Hwang, In-Chan;Lee, Jeoung-In;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.60-61
    • /
    • 2007
  • In this paper, the p-channel poly Si thin-film transistors (Poly-Si TFT's) using formed by solid phase crystallization (SPC) on glass substrate were fabricated. And we propose an ONO(Oxide-Nitride-Oxide) multilayer as the gate insulator for poly-Si TFT's to indicate non-volatile memory (NVM) effect. Poly-Si TFT is investigated by measuring the electrical properties of poly-Si films, such as I-V characteristics, on/off current ratio. NVM characteristics is showed by measuring the threshold voltage change of TFT through I-V characteristics.

  • PDF

High Density and Low Voltage Programmable Scaled SONOS Nonvolatile Memory for the Byte and Flash-Erased Type EEPROMs (플래시 및 바이트 소거형 EEPROM을 위한 고집적 저전압 Scaled SONOS 비휘발성 기억소자)

  • 김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.831-837
    • /
    • 2002
  • Scaled SONOS transistors have been fabricated by 0.35$\mu\textrm{m}$ CMOS standard logic process. The thickness of stacked ONO(blocking oxide, memory nitride, tunnel oxide) gate insulators measured by TEM are 2.5 nm, 4.0 nm and 2.4 nm, respectively. The SONOS memories have shown low programming voltages of ${\pm}$8.5 V and long-term retention of 10-year Even after 2 ${\times}$ 10$\^$5/ program/erase cycles, the leakage current of unselected transistor in the erased state was low enough that there was no error in read operation and we could distinguish the programmed state from the erased states precisely The tight distribution of the threshold voltages in the programmed and the erased states could remove complex verifying process caused by over-erase in floating gate flash memory, which is one of the main advantages of the charge-trap type devices. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ cycles can be realized by the programming method for a flash-erased type EEPROM.