• Title/Summary/Keyword: OLEDs

Search Result 641, Processing Time 0.027 seconds

White-light-emitting Organic Electroluminescent Device Based On Incomplete Energy Transfer

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Sung-Soo;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.701-705
    • /
    • 2002
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colors should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device based on an incomplete energy transfer. In which the blue and green emission come from the same layer via incomplete energy transfer.

  • PDF

A Study for Luminescence Properties of OLEDs Using $Alq_2-Ncd$ as an Emitting Layer ($Alq_2-Ncd$를 이용한 유기 전기 발광 소자의 발광특성에 관한 연구)

  • Yoon, Hee-Chan;Shin, Hoon-Kyu;Kim, Byoung-Sang;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.518-521
    • /
    • 2002
  • New luminescent material, 6,11-Dihydroxy-5,12-naphthacenedione$(Alq_2-Ncd)$ was synthesized. And extended efforts have been made to obtain high-performance electro-luminescent(EL) devices, since the first report of organic light-emitting diodes(OLEDs) based on tris-(8-hydroxy-quinoline)aluminum$(Alq_3)$ Current-voltage characteristics, brightness-voltage characteristics, luminous efficiency and quantum efficiency were measured at room temperature. The maximum wavelength of the EL is at around 504nm and the brightness is up to $2702[cd/m^2]$ with the maximum efficiency up to 3.91 [1m/W]. This study indicates not only the sterical effect but also some other effect would be responsible for the change of the emission wavelength.

  • PDF

Transparent Anodic Properties of In-doped ZnO thin Films for Organic Light Emitting Devices (In 도핑된 ZnO 박막의 투명 전극과 유기 발광 다이오드 특성)

  • Park, Young-Ran;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.303-307
    • /
    • 2007
  • Transparent In-doped zinc oxide (IZO) thin films are deposited with variation of pulsed DC power at Ar atmosphere on coming 7059 glass substrate by pulsed DC magnetron sputtering. A c-axis oriented IZO thin films were grown in perpendicular to the substrate. The optical transmittance spectra showed high transmittance of over 80% in the UV-visible region and exhibited the absorption edge of about 350 nm. Also, the IZO films exhibited the resistivity of ${\sim}10^{-3}{\Omega}\;cm$ and the mobility of ${\sim}6cm/V\;s$. Organic Light-emitting diodes (OLEDs) with IZO/N,N'-diphenyl-N, N'-bis(3-methylphenl)-1, 1'-biphenyl-4,4'-diamine (TPD)/tris (8-hydroxyquinoline) aluminum ($Alq_3$)/LiF/Al configuration were fabricated. LiF layer inserted is used as an interfacial layer to increase the electron injection. Under a current density of $100\;mA/cm^2$, the OLEDs show an excellent efficiency (9.4 V turn-on voltage) and a good brightness ($12000\;cd/m^2$) of the emission light from the devices. These results indicate that IZO films hold promise for anode electrodes in the OLEDs application.

Combinatorial studies on the work function characteristics for Nb or Zn doped indium-tin oxide electrodes

  • Heo, Gi-Seok;Kim, Sung-Dae;Park, Jong-Woon;Lee, Jong-Ho;Kim, Tae-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.159-159
    • /
    • 2008
  • Indium-tin oxides (ITO) films have been widely used as transparent electrodes for optoelectronic devices such as organic light emitting diodes (OLEDs), photovoltaics, touch screen devices, and flat-paneldisplay. In particular, to improve hole injection efficiency in OLEDs, transparent electrodes should have high work-function besides their transparency and low resistivity. Nevertheless, few studies have been made on engineering the work function of ITO for use as an efficient anode. In this study, the effects of a wide range of Nb or Zn doping rate on the changes in work functions of ITO anode were investigated. The Nb or Zn doped ITO films were fabricated on glass substrates using combinatorial sputtering system which yields a linear composition spread of Nb or Zn concentration in ITO films in a controlled manner by co-sputtering two targets of ITO and Nb2O5 or ITO and ZnO. We have also examined the resistivity, transmittance, and other structural properties of the Nb or Zn-doped ITO films. Furthermore, OLEDs employing Nb or Zn-doped ITO anodes were fabricated and the device performances were investigated concerned with the work function changes.

  • PDF

Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes (유기 발광 소자에서 정공 주입 버퍼층의 효과)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

Fabrication of Fine PEDOT:PSS Stripes Using Needle Coating (Needle 코팅을 이용한 미세 PEDOT:PSS 스트라이프 제작)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.100-104
    • /
    • 2019
  • We have investigated the feasibility of fabricating fine stripes using needle coating for potential applications in solution-processed organic light-emitting diodes (OLEDs). To this end, we have employed an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution that has been widely used as a hole injection layer (HIL) of OLEDs and performed needle coatings by varying the process parameters such as the coating gap and coating speed. As expected, the stripe width is reduced with increasing coating speed. However, the central thickness of the stripe is rather increased as the coating speed increases, which is different from other coating processes such as slot-die and blade coatings. It is due to the fact that the meniscus formed between the needle tip and the substrate varies depending sensitively on the coating speed. It is also found that the stripe width and thickness are reduced with increasing coating gap. To demonstrate its applicability to OLEDs, we have fabricated a red OLED stripe and obtained light emission with the width of about 90㎛.

Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand

  • Kang, Hyun-Ju;Lee, Kum-Hee;Lee, Suk-Jae;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3711-3717
    • /
    • 2010
  • Four orange-red phosphorescent Ir(III) complexes were designed and synthesized based on the benzoylphenylpyridine ligand with a fluorine substituent. Multilayered OLEDs with the device structure, ITO/2-TNATA/NPB/CBP : 8% Ir(III) complexes/BCP/Liq/Al, were fabricated using these complexes as dopant materials. All the devices exhibited orange-red electroluminescence and their electroluminescent properties were quite sensitive to the structural features of the dopants in the emitting layers. Among these, the maximum luminance ($14700\;cd/m^2$ at 14.0 V) was observed in the device containing Ir(III) complex 1 as the dopant. In addition, its luminous, power and quantum efficiency were 11.7 cd/A, 3.88 lm/W and 9.58% at $20\;mA/cm^2$, respectively. The peak wavelength of electroluminescence was 606 nm with CIE coordinates of (0.61, 0.38) at 12.0 V. The device also showed stable color chromaticity with various voltages.

Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes

  • Hyun, Woo Jin;Im, Sang Hyuk;Park, O Ok;Chin, Byung Doo
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.151-157
    • /
    • 2012
  • A simple method of fabricating out-coupling structures was demonstrated via solution-processing to enhance light extraction from organic light-emitting diodes (OLEDs). Scattering layers were easily obtained by spin-coating an $SiO_2$ sol solution that contained $TiO_2$ particles. By introducing the scattering layer and the solution-processible corrugated structure as internal and external extraction layers, the OLEDs showed increased external quantum efficiency without a change in the electroluminescence spectrum compared to conventional devices. Using these solution-processible out-coupling structures, nearly all-solution-processed OLEDs with enhanced light extraction could be fabricated. The light extraction enhancement is attributed to the suppression by the out-coupling structures of the light-trapping that arose at the interface of the glass substrate and the air.

Blue organic light emitting diodes with carbazole based small molecules and color tunning by controlled side group

  • Kim, Y.B.;Ahn, Y.J.;Park, J.H.;Khang, M.W.;Woo, H.S.;Park, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.514-516
    • /
    • 2003
  • We have fabricated an air stable blue emitting organic electroluminescent devices (OLEDs) with a carbazole based emitting molecule, Bis(3-N-ethylcarbazolyl)terephthalidene (BECP). Our device emits strong blue at 472 nm with the luminance efficiency of near 1 lm/W at a voltage and current density of 8 V and 5.7 mA/cm2, respectively, reaching the brightness up to 5000 cd/m2 at 270 mA/cm2. Finally, in order to tune the emission color from blue to green, we have used Bis(3-N-ethylcarbazolyl)cynoterephthalidene (BECCP), a derivative of BECP by adding cyno group in side chain, and compared the electroluminscence (EL) of OLEDS prepared by BECCP to that of BECP based OLEDs.

  • PDF

A Study on Electron Injection Characteristics of Organic Light Emitting Diodes with Doped Cathodes of Organic Light Emitting Diodes

  • Kwak, Yun-Hee;Lee, Yong-Soo;Park, Jae-Hoon;Kim, Yeon-Ju;Park, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.19-22
    • /
    • 2003
  • The co-evaporated cathodes composed of A1 and CsF is adopted to enhance the electrical and the optical properties of organic light emitting diodes (OLEDs). The hole transport layer (HTL), made of 50nm thick N,N-dipheny1-N,N-bis(3-methylphenyl)-1,1-bipheny14,4-diamine (TPD), and the electron transport layer (ETL), made of 50nm thick tris(8-hydroxy-quinoline) aluminum (A1q$_3$), were deposited under the base pressure of 1.6$\times$10$^{-6}$ Torr. In depositing A1-CsF, the mass ratio of CsF is varied between 1 and 10wt%. OLEDs with co-evaporated cathodes have luminance of about 35,000cd/$m^2$, and external quantum efficiency of about 1.38%. Cs tends to diffuse into the organic layer and then re-forms Cs$^{+}$cation and free electron with the Cs-doped surface region.n.