• Title/Summary/Keyword: OLED Deposition

Search Result 176, Processing Time 0.033 seconds

Study on Chucking Force and Substrate Deformation Characteristics of Electrostatic Chuck for Deposition According to Substrate Sizes (증착용 정전척의 기판 크기에 따른 척킹력 및 기판 변형 특성 연구)

  • Seong Bin Kim;Dong Kyun Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.12-18
    • /
    • 2024
  • A Electrostatic chuck is a device that fixes the substrate, using the force between charges applied between two parallel plates to attract substrates such as wafers or OLED panels. Unlike mechanical suction methods, which rely on physical fixation, this method utilizes the force of electrostatics for fixation, making it important to verify the adhesion force. As the size of the substrate increases, deformations due to gravity or chucking force also increase, and the adhesion force decreases rapidly as the distance between the chuck and the substrate increases. The outlook for displays is shifting from small to large OLEDs, necessitating consideration of substrate deformations. In this paper, to confirm the deformation of the substrate through various patterns, a simplified 2D model using Ansys' electromagnetic field analysis program, Maxwell, and the static structural analysis program, Mechanical, was utilized to observe changes in adhesion force according to the variation in the air gap between the substrate and the chuck. Additionally, the chucking force was analyzed for the size of the substrate, and the deformation of the substrate was confirmed when gravity and chucking force act simultaneously.

  • PDF

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.

Enhanced Efficiency of Organic Electroluminescence Diode Using 2-TNATA:C60 Hole Injection Layer (2-TNATA:C60 정공 주입층을 이용한 유기발광다이오드의 성능 향상 연구)

  • Park, So-Hyun;Kang, Do-Soon;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.372-376
    • /
    • 2008
  • Vacuum deposited 4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine (2-TNATA), used as a hole injection (HIL) material in OLEDs, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in the devices. C60-doped 2-TNATA:C60 (20 wt%) film was formed via co-evaporation process and molecular ordering and topology of 2-TNATA:C60 films were investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized as well. Vacuum-deposited C60 film was molecularly oriented, but neither was 2-TNATA:C60 film due to the uniform dispersion of C60 molecules in the film. By using C60-doped 2-TNATA:C60 film as a HIL, the current density and luminance of a multi-layered ITO/2-TNATA:C60/NPD/$Alq_3$/LiF/Al device were significantly increased and the current efficiency of the device was increased from 4.7 to 6.7 cd/A in the present study.

Improvement of Electrical Performance and Stability in ZnO Channel TFTs with Al Doped ZnO Layer (Al Doped ZnO층 적용을 통한 ZnO 박막 트랜지스터의 전기적 특성과 안정성 개선)

  • Eom, Ki-Yun;Jeong, Kwang-Seok;Yun, Ho-Jin;Kim, Yu-Mi;Yang, Seung-Dong;Kim, Jin-Seop;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.291-294
    • /
    • 2015
  • Recently, ZnO based oxide TFTs used in the flexible and transparent display devices are widely studied. To apply to OLED display switching devices, electrical performance and stability are important issues. In this study, to improve these electrical properties, we fabricated TFTs having Al doped Zinc Oxide (AZO) layer inserted between the gate insulator and ZnO layer. The AZO and ZnO layers are deposited by Atomic layer deposition (ALD) method. I-V transfer characteristics and stability of the suggested devices are investigated under the positive gate bias condition while the channel defects are also analyzed by the photoluminescence spectrum. The TFTs with AZO layer show lower threshold voltage ($V_{th}$) and superior sub-threshold slop. In the case of $V_{th}$ shift after positive gate bias stress, the stability is also better than that of ZnO channel TFTs. This improvement is thought to be caused by the reduced defect density in AZO/ZnO stack devices, which can be confirmed by the photoluminescence spectrum analysis results where the defect related deep level emission of AZO is lower than that of ZnO layer.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF

Dependency of the emission efficiency on doping profile of the red phosphorescent organic light-emitting diodes

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.224-224
    • /
    • 2016
  • Many researchers have been tried to improve the performance of the phosphorescent organic light-emitting diode(PHOLED) by controlling of the dopant profile in the emission layer. In this work, as shown in Fig. 1 insert, a typical red PHOLED device which has the structure of ITO/NPB(50nm)/CBP(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) is fabricated with a 5nm thick doping section in the emission layer. The doping section is formed by co-deposition of CBP and Ir(btp)2acac with a doping concentration of 8%, and it's location(x) is changed from HTL/EML interface to EML/HBL in 5nm steps. The current efficiency versus current density of the devices are shown in Fig. 1. By changing the location of doping section, as shown in Fig. 1 and 2, at x=5nm, the efficiency shows the maximum of 3.1 cd/A at 0.5 mA/cm2 and it is slightly decreased when the section is closed to HTL and slightly increased when the section is closed to HBL. If the doping section is closed to HTL(NPB) the excitons can be quenched easily to NPB's triplet state energy level(2.5eV) which is relatively lower than that of CBP(2.6eV). Because there is a hole accumulation at EML/HBL interface the efficiency can be increased slightly when the section is closed to HBL. Even the thickness of the doping section is only 5nm,. the maximum efficiency of 3.1 cd/A with x=5 is closed to that of the homogeneously doped device, 3.3 cd/A, because the diffusion length of the excitons is relatively long. As a result, we confirm that the current efficiency of the PHOLED can be improved by the doping profile optimization such as partially, not homogeneously, doped EML structure.

  • PDF

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Salen-Aluminum Complexes as Host Materials for Red Phosphorescent Organic Light-Emitting Diodes

  • Bae, Hye-Jin;Hwang, Kyu-Young;Lee, Min-Hyung;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3290-3294
    • /
    • 2011
  • The properties of monomeric and dimeric salen-aluminum complexes, [salen(3,5-$^tBu)_2$Al(OR)], R = $OC_6H_4-p-C_6H_6$ (H1) and R = [salen(3,5-$^tBu$)AlOPh]C$(CH_3)_2$ (H2) (salen = N,N'-bis-(salicylidene)-ethylenediamine) as host layer materials in red phosphorescent organic light-emitting diodes (PhOLEDs) were investigated. H1 and H2 exhibit high thermal stability with decomposition temperature of 330 and $370^{\circ}C$. DSC analyses showed that the complexes form amorphous glasses upon cooling of melt samples with glass transition temperatures of 112 and $172^{\circ}C$. The HOMO (ca. -5.2~-5.3 eV) and LUMO (ca. -2.3~-2.4 eV) levels with a triplet energy of ca. 1.92 eV suggest that H1 and H2 are suitable for a host material for red emitters. The PhOLED devices based on H1 and H2 doped with a red emitter, $Ir(btp)_2$(acac) (btp = bis(2-(2'-benzothienyl)-pyridinato-N,$C^3$; acac = acetylacetonate) were fabricated by vacuum-deposition and solution process, respectively. The device based on vacuum-deposited H1 host displays high device performances in terms of brightness, luminous and quantum efficiencies comparable to those of the device based on a CBP (4,4'-bis(Ncarbazolyl) biphenyl) host while the solution-processed device with H2 host shows poor performance.

Synthesis of Solution-based Sb-doped SnO2 Thin Films

  • Koo, Bon-Ryul;An, Geon-Hyoung;Lee, Yu-jin;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.367-367
    • /
    • 2014
  • Transparent conductive oxides (TCOs) 박막은 가시광선영역에서의 높은 투과율과 낮은 저항 특성을 동시에 갖고 있어 최근 smart windows, solar cells, liquid crystal displays (LCD), organic light emitting devices (OLED)등과 같은 최첨단 기기에 필수적인 구성요소로 활발히 사용되고 있다. 따라서, 현재까지 FTO ($SnO_2:F$), ITO ($In_2O_3:Sn$), ATO ($SnO_2:Sb$)등과 같은 다양한 TCO들이 많은 연구자들에 의해 연구되고 있다. 그 중 ITO는 우수한 전기적(${\sim}10^{-4}{\Omega}cm$) 및 광학적(~85%) 특성 때문에 현재 상업적으로 활발히 응용되고 있는 대표적인 물질이다. 하지만 ITO의 주된 구성요소인 indium은 제한적인 매장량과 과도한 소비량 때문에 원가가 비싸다는 문제점이 있다. 반면에, ATO는 우수한 전기적(${\sim}10^{-3}{\Omega}cm$) 및 광학적(~80%) 특성뿐만 아니라 구성물질들의 매장량이 풍부하여 ATO의 원가가 저렴하다는 장점을 가지고 있어 현재 ITO을 대체 할 수 물질로 관심 받고 있다 [1]. 지금까지 우수한 특성을 갖는 ATO박막을 합성하는 방법으로 sol-gel spin coating, sputtering, spray pyrolysis, chemical vapor deposition (CVD)등이 알려져 있다. 이 중에서도, sol-gel spin coating과 spray pyrolysis은 solution기반의 합성법으로 분류되며 합성과정이 간단하고 비용이 저렴하다는 장점이 있고 현재까지 많은 연구가 보고되었다. 그러나, 진공기반이 아닌 우수한 특성을 갖는 solution기반의 ATO박막을 합성하기 위해서는 새로운 합성법의 개발이 학문적으로나 산업적으로도 매우 중요한 이슈이다. 따라서, 본 연구에서는 electrospray을 활용하여 solution기반의 ATO박막을 처음으로 합성하였다. 게다가 ATO박막에 열처리온도에 따른 구조, 화학, 전기, 광학적 특성을 확인하기 위하여 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), Hall Effect Measurement System, UV spectrophotometer를 사용하였다. 이러한 실험 결과들을 바탕으로 electrospray을 통해 합성된 solution기반의 ATO박막에 자세한 특성을 본 학회에서 다루도록 하겠다.

  • PDF

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF