• Title/Summary/Keyword: OLED (organic light-emitting device)

Search Result 302, Processing Time 0.026 seconds

Effects of Low Workfunction Metal Acetate Layers on the Electroluminescent Characteristics of Organic Light-Emitting Diodes (저일함수 금속 아세트산 화합물 층을 사용한 유기발광다이오드의 전기발광 특성 향상)

  • Kim, Mansu;Yu, Geun-Chae;Kim, Young Chul
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.634-639
    • /
    • 2013
  • We investigated the effects of a cathode underlayer on the electroluminescence (EL) characteristics of organic light-emitting diodes (OLEDs) using various metal acetates (M-acetate, M = Li, Na, K, Cs) as a cathode underlayer. When 1 nm thick M-acetate layers were used as a cathode underlayer, the OLEDs with M-acetate showed better EL performance than the device with the conventional LiF electron injection layer except the device with Cs-acetate. More enhanced current density and improved EL characteristics were obtained when lower work function metal acetate was employed. In addition, the optimum M-acetate layer thickness that gives the best device performance proved to be 0.7 and 2.0 nm for Li-acetate and Cs-acetate, respectively, probably depending on the molecular size of M-acetate. The OLEDs with the M-acetate layers of optimized thickness demonstrated more than 60% enhanced current efficiency compared with that of the device using an LiF layer at the same applied voltage.

Application of OLED as the Integrated Light source for the Portable Lab-On-a-Chip (휴대형 랩온어칩을 위한 집적화 광원으로의 OLED 적용)

  • Kim, Ju-Hwan;Shin, Kyeong-Sik;Kim, Young-Min;Kim, Yong-Kook;Yang, Yeun-Kyeong;Kim, Tae-Song;Kang, Ji-Yoon;Kim, Sang-Sig;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.193-197
    • /
    • 2004
  • The organic light emitting diode (OLED) is proposed as the novel source in the microchip because it has ideal merits (various wavelengths, thin-film structure and overall emitting) for the integration. In this paper, we fabricated the finger-type pin photodiodes for fluorescence detection and the advanced microchip with OLED integrated pn the microchannel. The finger-type in the diode design extended the depletion region and reduced the internal resistance about 31.2% than rectangular-type. The photodiodes had a 100pA leakage current and a 8720 sensitivity $(I_{Light}/I_{Dark})$ at -1 V bias. The interference filter with 32 layers ($SiO_2$, $TiO_2$) was directly deposited on the photodiode. The OLED was fabricated on the ITO coated glass and was bonded with LOC. The application of thin-film OLED increased the excitation efficiency and simplified the integration process extremely. The prototype device of this application had a superior sensitivity of 100nM-LOD in the fluorescence detection.

  • PDF

Review of OLED-based Wearable Display for Smart Textiles (스마트 텍스타일 구현을 위한 OLED 기반 웨어러블 디스플레이 리뷰)

  • Jeong, Eun Gyo;Lee, Chang-Min;Cho, Seok Ho
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.860-868
    • /
    • 2021
  • Clothing has a very important role in human life, and it is the most human-friendly platform because humans wear it in almost all the time. In the recent years, smart clothing integrated with various functions is solidifying its position as the core of next-generation Information and Communications Technology(ICT). With this global trend, the smart textiles, textiles embedded with electronic devices that are capable of performing various functions, have been attracting a lot of attention. Therefore, various research activities on the smart textiles are in progress, and the global market outlook for the smart textiles is also showing rapid growth. Among the various smart textile technologies, the textile/fiber-based wearable display has been attracting more attention because it is an essential element for wearers to intuitively control the functions integrated in the smart textiles. This paper provides insightful information and the technological elements of organic light emitting diodes(OLEDs) display, which have been evaluated as the most ideal device for luminescent clothing. Since, OLEDs have many advantages such as light weight, extremely thin thickness and great flexibility, the textile/fiber-based wearable OLEDs can be worn without any inconvenience. In addition, by introducing previous studies on the textile/fiber-based OLED displays, we intend to consider the commercial potential of the textile/fiber-based smart luminescent clothing using the OLED technologies.

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF

Impedance Characteristics of Blue Fluorescent OLED According to Elapsed Time (경과 시간에 따른 청색 형광 OLED의 Impedance 특성)

  • Kong, Do-Hoon;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • In order to study current-voltage-luminance and impedance characteristics according to elapsed time, a blue fluorescent OLED was fabricated. The current density and luminance gradually decreased in accordance with elapsed time and did not emit light after 480 hours, and the threshold voltage increased as time elapsed. The Cole-Cole plot was a semicircular shape of a very large size at 2 V of the applied voltage below the threshold voltage, and the maximum value of the real number impedance did not change greatly from 9314.5 to $9902.2{\Omega}$ as time elapsed. Applied voltages 4, 6, and 8 V above the threshold voltage showed a large change in the real number impedance value at the semicircle end to 9,678.2, 9,826, $9,535.4{\Omega}$ according to the elapsed time from 2,222.5, 183.7, $48.2{\Omega}$ immediately after fabricating the device. By increasing the applied voltage beyond the threshold voltage just after device fabrication, the energy difference between the device and the organic layer was overcome and the current flowed, the maximum value of the real number impedance sharply decreased. As time passed, current did not flow through the element even at high applied voltage due to degradation of the element, and even when the applied voltage was higher than the threshold voltage, it showed an impedance value such as applied voltage equal to or less than the threshold voltage. As a result, it can be learned that the change in the impedance with elapsed time reflects the characteristics due to the degradation of the OLED and can predict the characteristics and lifetime of the OLED.

Electrical Characteristics of OLED using the Hetero-Electrode (이종 전극에 의한 OLED 전기적 특성 연구)

  • Lee, Jung-Ho;Suh, Chung-Ha;Jeong, Ji-Hoon;Kim, Young-Kwan;Kim, Young-Sik;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.274-278
    • /
    • 2004
  • In this study, hetero-electrode structures have been fabricated to increase luminescence efficiency. The presence of a thin layer of Sn or Ag at the organic-aluminum interface enhanced both electron injection efficiency and electroluminescence when compared to OLEDs using homogeneous electrode. In this paper, the effect of the cathode using Sn/Al hetero electrode structure is observed. Electric properties of the OLED using Sn/Al hetero cathode are improved in comparison of only Al cathode. The hetero-electrode existing different energy level induces the advanced structure of OLED can accumulate electron density. The luminescence efficiency of OLED with Sn/Al of Ag/Al cathode is higher because of their higher electron injection efficiency. And, the turn on voltage of the OLED device using Sn thin layer is lowest as about 10 V.

Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent

  • Ahn, Yeonseon;Jang, Da Eun;Cha, Yong-Bum;Kim, Mansu;Ahn, Kwang-Hyun;Kim, Young Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.

A Study on Dependent Characteristic between The Organic Deposition Rate and The Performance in Organic Light Emitting Device

  • Kim, Mun-Su;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.150.2-150.2
    • /
    • 2015
  • In this study, we analyzed the electric and optical characteristics by using various deposition rate ($0.5{\AA}$, $1.0{\AA}$ and $1.5{\AA}/s$) in order to enhance the performance in organic light-emitting devices (OLED). The organic multi-layer structures were deposited with NPB ($500{\AA}$ as hole transport layer), Alq3 ($600{\AA}$ as electron transport layer and emission layer) and LiF ($8{\AA}$ as electron injection layer) via SUNIC PLUS200 on Glass/ITO substrates. In this experiment, we examined the relationship between porous state of organic deposition and mobility of the organic materials. Among the three deposition rates, $0.5{\AA}/s$ achieved the highest performance of (10,786cd/m2, 4.387cd/A) comparing with that of $1{\AA}/s$ (7,779cd/m2, 3.281cd/A) and $1.5{\AA}/s$ (5,167cd/m2, 2.693cd/A). We confirmed that low deposition rate helps to arrange organic materials densely and to move easily another atomic location using inter-chain transporting by orbital overlap.

  • PDF

Improving electroluminescent efficiency of organic light emitting diodes by co-doping (Co-doping을 이용한 OLED의 발광 효율 향상)

  • Park, Young-Wook;Kim, Young-Min;Choi, Jin-Hwan;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.81-82
    • /
    • 2006
  • Doping is a well-known method for improving electroluminescent (EL) efficiency of organic light emitting diodes. In our study, doping with 2 materials simultaneously, we could achieve improved EL efficiency. The emission layer was tris-(8-hydroxyquinoline)aluminum, and the 2 dopants were N,N'-dimethyl-quinacridone (DMQA) and 10-(2-Benzothiazolyl)-2, 3, 6, 7-tetrahydro-1,1,7,7,-tetramethyl 1-1H, 5H, 11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one (C-545T). The EL intensity of co-doped device was nearly flat, it shows that co-doping technique could be a effective way to improve the EL efficiency. EL efficiency of Single-doped device based on DMQA and C-S45T were ~6.47Cd/A and ~7.45Cd/A, respectively. Co-doped device showed higher EL efficiency of ~8.30Cd/A.

  • PDF

Characteristics of the Adhesion Layer for the Flexible Organic Light Emitting Diodes (플렉시블 OLED 소자 제작을 위한 접합층 특성 연구)

  • Cheol-Hee Moon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.86-94
    • /
    • 2023
  • To fabricate all-solution-processed flexible Organic Light-Emitting Diodes (OLEDs), we demonstrated a bonding technology using a polyethyleneimine (PEI) as an adhesion layer between the two substrates. As the adhesion layer requires not only a high adhesion strength, but also a high current density, we have tried to find out the optimum condition which meets the two requirements at the same time by changing experimental factors such as PEI concentration, thickness of the layer and by mixing some additives into the PEI. The adhesion strength and the electrical current density were investigated by tensile tests and electron only device (EOD) experiments, respectively. The results showed that at higher PEI concentration the adhesion strength showed higher value, but the electrical current through the PEI layer decreased rapidly due to the increased PEI layer thickness. We added Sorbitol and PolyEthyleneGlycohol (PEG) into the 0.1 wt% PEI solution to enhance the adhesion and electrical properties. With the addition of the 0.5 wt% PEG into the 0.1 wt% PEI solution, the device showed an electrical current density of 900 mA/cm2 and a good adhesion characteristic also. These data demonstrated the possibility of fabricating all-solution-processed OLEDs using two-substrate bonding technology with the PEI layer as an adhesion layer.