DOI QR코드

DOI QR Code

Review of OLED-based Wearable Display for Smart Textiles

스마트 텍스타일 구현을 위한 OLED 기반 웨어러블 디스플레이 리뷰

  • Jeong, Eun Gyo (Dept. of Clothing and Textiles, Chonnam National University) ;
  • Lee, Chang-Min (Dept. of Veterinary Internal Medicine, College of Veterinary Medicine/BK21 FOUR program, Chonnam National University) ;
  • Cho, Seok Ho (Dept. of Clothing and Textiles, Chonnam National University)
  • 정은교 (전남대학교 의류학과) ;
  • 이창민 (전남대학교 수의학과/BK21FOUR 프로그램) ;
  • 조석호 (전남대학교 의류학과)
  • Received : 2021.11.18
  • Accepted : 2021.12.22
  • Published : 2021.12.31

Abstract

Clothing has a very important role in human life, and it is the most human-friendly platform because humans wear it in almost all the time. In the recent years, smart clothing integrated with various functions is solidifying its position as the core of next-generation Information and Communications Technology(ICT). With this global trend, the smart textiles, textiles embedded with electronic devices that are capable of performing various functions, have been attracting a lot of attention. Therefore, various research activities on the smart textiles are in progress, and the global market outlook for the smart textiles is also showing rapid growth. Among the various smart textile technologies, the textile/fiber-based wearable display has been attracting more attention because it is an essential element for wearers to intuitively control the functions integrated in the smart textiles. This paper provides insightful information and the technological elements of organic light emitting diodes(OLEDs) display, which have been evaluated as the most ideal device for luminescent clothing. Since, OLEDs have many advantages such as light weight, extremely thin thickness and great flexibility, the textile/fiber-based wearable OLEDs can be worn without any inconvenience. In addition, by introducing previous studies on the textile/fiber-based OLED displays, we intend to consider the commercial potential of the textile/fiber-based smart luminescent clothing using the OLED technologies.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부, 농림축산식품부, 농촌진흥청)의 재원으로 한국연구재단, 한국농림식품기술기획평가원, 한국스마트팜 R&D재단의 지원을 받아 수행된 연구임(No. NRF-2020R1F1A1076261, No. 421015041HD020).

References

  1. Bender, V. C., Marchesan, T. B., & Alonso, J. M. (2015). Solid-state lighting - A concise review of the state of the art on LED and OLED modeling. IEEE Industrial Electronics Magazine, 9(2), 6-16. doi:10.1109/MIE.2014.2360324
  2. Choi, S., Kwon, S., Kim, H., Kim, W., Kwon, J. H., Lim, M. S., Lee, H. S., & Choi, K. C. (2017). Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Scientific Reports, 7(1), 1-8. doi:10.1038/s41598-017-06733-8
  3. Cochrane, C., Meunier, L., Kelly, F. M., & Koncar, V. (2011). Flexible displays for smart clothing - Part I - Overview. Indian Journal of Fibre & Textile Research, 36(4), 422-428.
  4. Dameron, A. A., Davidson, S. D., Burton, B. B., Carcia, P. F., McLean, R. S., & George, S. M. (2008). Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. The Journal of Physical Chemistry C, 112(12), 4573-4580. doi:10.1021/jp076866+
  5. De Vos, M., Torah, R., Glanc-Gostkiewicz, M., & Tudor, J. (2016). A complex multilayer screen-printed electroluminescent watch display on fabric. Journal of Display Technology, 12(12), 1757-1763. doi:10.1109/JDT.2016.2613906
  6. Han, J. H., Kim, D. H., Jeong, E. G., Lee, T. W., Lee, M. K., Park, J. W., Lee, H., & Choi, K. C. (2017). Highly conductive transparent and flexible electrodes including double-stacked thin metal films for transparent flexible electronics. ACS applied materials & interfaces, 9(19), 16343-16350. doi:10.1021/acsami.7b04725
  7. Hu, B., Li, D., Ala, O., Manandhar, P., Fan, Q., Kasilingam, D., & Calvert, P. D. (2011). Textile-based flexible electroluminescent devices. Advanced Functional Materials, 21(2), 305-311. doi:10.1002/adfm.201001110
  8. Hwang, Y. H., Kwon, S., Shin, J. B., Kim, H., Son, Y. H., Lee, H. S., Noh, B., Nam, M., & Choi, K. C. (2021). Bright-multicolor, highly efficient, and addressable phosphorescent organic lightemitting fibers - Toward wearable textile information displays. Advanced Functional Materials, 31(18), 2009336. doi:10.1002/adfm.202009336
  9. Jeong, E. G., Han, Y. C., Im, H. G., Bae, B. S., & Choi, K. C. (2016). Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Organic Electronics, 33, 150-155. doi:10.1016/j.orgel.2016.03.015
  10. Jeong, E. G., Jeon, Y., Cho, S. H., & Choi, K. C. (2019). Textile-based washable polymer solar cells for optoelectronic modules - Toward self-powered smart clothing. Energy & Environmental Science, 12(6), 1878-1889. doi:10.1039/C8EE03271H
  11. Kim, J. S., Park, S. J., Kim, Y. J., & Lee, J. H. (2011). An exploratory study on luminescent properties and the relevant applications of POF-based flexible textile display for mountaineer wear with safeguard function. Science of Emotion and Sensibility, 14(1), 165-174.
  12. Kim, W., Kwon, S., Lee, S. M., Kim, J. Y., Han, Y., Kim, E., Choi, K. C., Park, S., & Park, B. C. (2013). Soft fabric-based flexible organic light-emitting diodes. Organic Electronics, 14(11), 3007-3013. doi:10.1016/j.orgel.2013.09.001
  13. Kim, W., Kwon, S., Han, Y. C., Kim, E., Choi, K. C., Kang, S. H., & Park, B. C. (2016). Reliable actual fabric-based organic light-emitting diodes - Toward a wearable display. Advanced Electronic Materials, 2(11), 1600220. doi:10.1002/aelm.201600220
  14. Ko, K. J., Lee, H. B., Kim, H. M., Lee, G. J., Shin, S. R., Kumar, N., Song, Y. M., & Kang, J. W. (2018). High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale, 10(34), 16184-16192. doi:10.1039/C8NR05120H
  15. Koncar, V. (2005). Optical fiber fabric displays. Optics and Photonics news, 16(4), 40-44. doi:10.1364/OPN.16.4.000040
  16. Kwon, S., Kim, H., Choi, S., Jeong, E. G., Kim, D., Lee, S., Lee, H. S., Seo, Y. C., & Choi, K. C. (2018). Weavable and highly efficient organic light-emitting fibers for wearable electronics - A scalable, low-temperature process. Nano letters, 18(1), 347-356. doi:10.1021/acs.nanolett.7b04204
  17. Meyer, J., Schmidt, H., Kowalsky, W., Riedl, T., & Kahn, A. (2010). The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Applied Physics Letters, 96(24), 117. doi:10.1063/1.3455324
  18. Na, Y., Tang, C., Han, R., & Kim, S. (2021a). A study on the development of LED stage costume design using arduino lilypad and sound sensor. Journal of Fashion Business, 25(1), 133-149. doi:10.12940/jfb.2021.25.1.133
  19. Na, Y., Tang, C., Han, R., & Kim, S. (2021b). Research on the development of inclusive safety vest design for traffic accidents using lilypad and a light sensor. Journal of the Korean Society of Costume, 71(2), 142-162. doi:10.7233/jksc.2021.71.2.142
  20. O'Connor, B., An, K. H., Zhao, Y., Pipe, K. P., & Shtein, M. (2007). Fiber shaped light emitting device. Advanced Materials, 19(22), 3897-3900. doi:10.1002/adma.200700627
  21. Song, H., & Cho, H. (2014). Design of Illuminating Car Seats based on Woven Fabric of Optical Fiber. Science of Emotion and Sensibility, 17(1), 29-38. doi: 10.14695/KJSOS.2014.17.1.29
  22. Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51(12), 913-915. doi:10.1063/1.98799