• 제목/요약/키워드: OLED(organic light emitting device)

검색결과 302건 처리시간 0.03초

A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device (다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구)

  • 노병규;강명구;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제15권5호
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.

Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers (HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발)

  • Lee, Tae-Sung;Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제21권9호
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

Study of OLED luminescence efficiency by electron Injection layer change (유기발광 소자의 전자 주입층 두께 변화에 따른 발광효율 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.555-558
    • /
    • 2004
  • The efficiency of electron injection from the cathode is strongly dependent on the thickness of the LiF buffer-layer. We used LiF to electron Injection layer. We compared characteristics of organic light emitting device changing LiF thin film thickness from 1.0 m to 10.0 nm. Experiment result, we found that LiF thickness has the optimized electrical characteristics in 3.0 m. In this paper, we did research about electrical characteristics of organic light emitting device by LiF thickness change using method numerical analysis method. We proved adequate experimental results that compare results of numerical analysis, and come out through an experiment results is validity.

  • PDF

Electro-optical Characterization of OLED Device

  • Lee Soon-Seok;Kim Ki-Seok;Lim Sung-Kyoo
    • International Journal of Contents
    • /
    • 제2권3호
    • /
    • pp.6-10
    • /
    • 2006
  • Small molecule OLED devices were fabricated and the electro-optical characteristics were analyzed. The luminance and color coordinate of the fabricated OLED device were $24,390cd/m^2$ and (x=0.15, y=0.22), respectively. Current efficiency of 6.8 cd/A and power efficiency of 2.4 lm/W were also obtained under DC operating condition. Transient light intensity was also measured by using Si photodiode.

  • PDF

Effects of Electron Transport Layers on Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes (전자수송층이 청색 인광 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Suh, Won-Gyu;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제22권4호
    • /
    • pp.323-326
    • /
    • 2009
  • We have developed blue-emitting phosphorescent organic light emitting diodes (OLEDs) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tris (8-quinolinolato)aluminum ($Alq_3$) electron transport layers. As blue dopant and host materials, bis[(4,6-di-fluorophenyl)-pyridinate-N,C2']picolinate (FIrpic) and N,N'-dicarbazolyl-3,5-benzene (mCP) were used, respectively. The driving voltage, current efficiency and emission characteristics of devices were investigated. While the driving voltage was about $1{\sim}2$ V lower in the device with an $Alq_3$ layer, the current efficiency was about 66 % higher in the device with BCP electron transport layer. the blue phosphorescent OLED with BCP layer exhibited higher purity of color, resulting from a relatively weak electroluminescence intensity at 500 nm.

Fabrication of OLED using low cost transparent conductive thin films (저가격 투명전극을 이용한 OLED의 제작)

  • Lee, B.J.;Shin, P.K.;You, D.H.;Ji, S.H.;Lee, N.H.;Park, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1281-1282
    • /
    • 2008
  • Low cost TCO(Transparent Conductive oxide) thin films were prepared by 3" DC/RF magnetron sputtering systems. For the AZO preparation processes a 99.99% AZO target (Zn: 98 wt.%, $Al_2O_3$: 2 wt.%) was used. In order to verify feasibility of the AZO thin films to organic light emitting device (OLED) application, test organic light emitting device was fabricated based on AZO as TCO, TPD as hole transporting layer (HTL), Alq3 as both emitting layer (EML) and electron transporting layer (ETL), and aluminium as cathode, where the both ITO and AZO surfaces were treated using $O_2$ RF plasma. The I-V characteristics of the AZO/TPD/Alq3/Al OLEDs were evaluated. As the results, the performance of the OLEDs with AZO as transparent conducting anode could be useable.

  • PDF

Dependence of Resistance and Capacitance of Organic light Emitting diode (OLED) on Applied Voltage

  • Lee, Soon-Seok;Im, Woo-Bin;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.446-449
    • /
    • 2008
  • Organic light emitting diodes (OLEDs) with multiple organic layers were fabricated to obtain and to evaluate an equivalent resistance and an equivalent capacitance of OLED device. The staircase voltage with an increasing period and a constant period was designed and applied to the OLED. The resistance of OLED was found to decrease from $270\;k{\Omega}$ to $2\;K{\Omega}$ as applied voltage increased after turn on. The equivalent capacitance of OLED maintained unchanged at low voltage level and deceased after showing peak value as the applied voltage increased.

  • PDF

A Study on Electric Characteristics of Multi-layer by Light Organic Emitting Diode (유기발광소자(Organic Light Emitting Diode)의 다층박막에 대한 전기적 특성 연구)

  • Lee Jung-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제10권2호
    • /
    • pp.76-81
    • /
    • 2005
  • This research approached electrical characteristics of organic light emitting diodes getting into the spotlight by next generation display device. Basic mechanism of OLED's emitting is known as that electron by cathode of lower work function and hole by anode of higher work function are driven and recombine exciton-state being flowed in emitting material layer passing carrier transport layer In order to make many electron-hole pairs, we must manufacture device in multi-layer structure. There are Carrier Injection Layer(CIL), Carrier Transport Layer(CTL) and Emitting Material Layer(EML) in multi-layer structure. It is important that regulate thickness of layer for high luminescence efficiency and set mobility of hole and electron.

  • PDF

A Study on the Luminous Properties of the White-light-emitting Organic LED with Two-wavelength using DPVBi/Alg3:Rubrene Structure (DPVBi/Alg3:Rubrene 구조를 사용한 2-파장 방식의 백색유기발광소자의 발광특성에 관한 연구)

  • 조재영;최성진;윤석범;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제16권7호
    • /
    • pp.616-621
    • /
    • 2003
  • The white-light-emitting organic LED with two-wavelength was fabricated using blue emitting material(DPVBi) and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The basic structure of white-light-emitting OLED was ITO/NPB(150$\AA$)/DPVBi(150$\AA$)/Alq$_3$:Rubrene(150$\AA$)/BCP(100$\AA$)/Alq$_3$(150$\AA$)/Al(600$\AA$). The changes of the CIE coordiante strongly depended on the doping concentration of Rubrene and the thickness of NPB layer. We obtained the white-light-emitting OLED close to the pure white color light and the CIE coordinate of the device was (0.315, 0.330) at applied voltage of 13V when the doping concentration of Rubrene was 0.5wt% and the thickness of NPB layer is 200$\AA$. At a current of 100mA/$\textrm{cm}^2$, the quantum efficiency was 0.35%.

Feasibility Test for Radical reactions in Organic Light Emitting Diode (유기 발광 다이오드 내부의 라디칼 반응 가능성 검사)

  • Han, Chul-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제14권4호
    • /
    • pp.365-368
    • /
    • 2008
  • Feasibility test for radical reactions in organic light emitting diode(OLED) has been applied on OLED consisting of hole transport layer(HTL) and electron transport layer(ETL). Organic molecules such as 4,4',-Bis[N-(1-naphthyl)-N-phenylamino] biphenyl(NPD) and 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine(m-MTDATA) are chosen for hole transport layer(HTL) and Bathocuproine(BCP) for electron transport layer(ETL) in this study. Informations on energy and shape of frontier orbitals and data on radical reactions of simple aromatics from semiconductor($TiO_2$) photocatalysis have provided basis for determining feasibility for radical reactions in OLED. The outcome of our feasibility test would be useful in designing optimum molecule for organic layer with a view to extending the lifetime of OLED.