• Title/Summary/Keyword: OLED(Organic Light-Emitting Diode)

Search Result 289, Processing Time 0.023 seconds

EL Properties of OLEDs with Different Crystal Structures of Hole Injection Layers of Copper(II)-phthalocyanine (정공 주입층 Copper(II)-phthalocyanine의 결정 변화에 따른 유기발광소자의 발광특성연구)

  • 임은주;이기진;한우미;이정윤;차덕준;이용산;김진태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • We report the electrical properties of copper(II)-phthalocyanine(Cu-Pc) as a hole injaction layer in organic light-emitting diode (OLED). OLEDs were constructed by the following material structure : indium tin oxaide (ITO)/ CuPc/ triphenyl-diamine (TPD)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/4-(Dicyanomethlene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)/ Al. we observed that the change of recombination zone by using a DCM detection thin layer (6 ${\AA}$) in a Alq$_3$ emitting layer. layer. Recombination zone was moved toward the cathode as the hole mobility increased due to the heat-treatment temperature of cupc layer increased.

Trend on Recycling Technologies for Display Wastes analysed by the Patents and Literature Review (특허(特許)와 논문(論文)으로 본 폐(廢) 디스플레이 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Sung-Kyu;Lee, Chan-Gi;Hong, Hyun-Seon;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.65-73
    • /
    • 2012
  • There are several kinds of displays such as liquid crystal display (LCD), cathode ray tube (CRT), plasma display panel(PDP), light emitting diode (LED), organic light emitting diode (OLED), etc. Nowadays, recycling technologies of waste displays have been widely studied from economy and efficiency points of view. In this paper, patents and literature on the recycling technologies of the waste displays have been comprehensively analyzed. The search was limited to the open patents of USA (US), European Union (EU), Japan (JP), and Korea (KR) and SCI journals published from 1980 to 2011. Patents and journals were systematically compiled and collected using key-words search and filtered by pre-set filtering criteria. The trends of the patents and journals were thus analyzed according to the years, countries, companies, and technologies.

Improved On-off Property of SiO2 Embedded Polyfluorene Polymer-OLED (SiO2의 첨가를 통한 Polyfluorene계 Polymer-OLED의 발광 동작 개선 가능성)

  • Jeon, Byung Joo;Kim, Hyo Jun;Kim, Jong Su;Jeong, Yong Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2017
  • The effect of weak dielectric silicone dioxide($SiO_2$) embedded in polyfluorene(PFO) emitting layer of polymer-based multi structure OLED was investigated. Indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO)/2,2,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/aluminum(Al) structure OLED was fabricated by spin-coating method. Applied electric field causes some effect on $SiO_2$ in PFO layer. Thus, interaction between polymers and affected $SiO_2$ might generate electrical and luminance properties change. Experimental results, show the reduced threshold voltage of 6 V(from 23 V to 17 V). The maximum current density was rather increased from $71A/m^2$ to $610A/m^2$ and maximum brightness was also increased from $7.19cd/m^2$ to $41.03cd/m^2$, 9 and 6 times each. Additionally we obtained colour broadening result due to the increasing of blue-green band emission. Consequently we observed that electrical and luminance properties are enhanced by adding $SiO_2$ and identified the possibility of controlling the emission colour of OLED device according to colour broadening.

  • PDF

Polymeric hole-injection layer for high-efficiency and long-lifetime in organic light-emitting diodes

  • Choi, Mi-Ri;Han, Tae-Hee;Woo, Seong-Hoon;Lim, Kyung-Geun;Yun, Won-Min;Kwon, Oh-Kwan;Park, Chan-Eon;Shin, Hoon-Kyu;Hur, Dal-Ho;Shin, Kyoung-Hwan;Jang, Jyong-Sik;Lee, Tae-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.781-783
    • /
    • 2009
  • We achieved high efficiency and long lifetime in small-molecule organic light-emitting diodes using a blend of polyaniline-based conducting polymer and a perfluorinated ionomer as a hole injection layer (HIL). The HIL formed by single spin coating greatly enhanced the surface work function and thus the hole injection from the anode, which resulted in great improvement in device luminous efficiency. We find that the solution processed HIL outperforms the conventional vacuum-deposited small molecule HIL in terms of the device performance.

  • PDF

플렉시블 디스플레이

  • Jang, Jin
    • Information Display
    • /
    • v.7 no.3
    • /
    • pp.4-17
    • /
    • 2006
  • 차세대 디스플레이로서, 특히 휴대기기를 위한 플레깃블 디스플레이에 대한 관심이 증가되고 있다. 지난 몇 년간 계속적으로 연구가 이루어져 왔음에도 불구하고, 플렉시블 디스플레이는 아직 하나의 '제품'으로서 시장에 진입하지 못하고 있다. 플렉시블 디스플레이는 플라스틱이나 메탈 호일, 플렉시블 유리와 같은 플렉시블 기판이 쓰이는데, 이것은 가벼우면서 얇고 강하며 제조 측면에서 높은 생산성을 가질뿐만 아니라 착용이 가능할 정도의 자유로운 디자인이 가능하다는 장점을 가지고 있다. 이러한 많은 장점으로 인해 플렉시블 디스플레이의 연구와 개발이 빠르게 진행되고 있다. 지난 몇 년 동안 개발된 전기영동(electrophoretic), 유기전계발광(OLED, organic light-emitting diode), 액정(liquid-crystal)과 관련된 플렉시블 디스플레이에 대해 성능 등을 알아보고, 플렉시블 디스플레이용으로 개발된 플라스틱 기판과 그 위에 형성된 유기박막트랜지스터(OTFTs, organic thin film transistors)의 특성을 분석한다. 그리고 oTFTs의 성능과 제작공정의 이해를 위해 self organized process에 대해 설명하고 마지막으로 중요 연구 과제를 제시한다.

ITO Thin film deposition in large area by Roll to Roll process (Roll to Roll 장비를 적용한 대면적 ITO 박막 증착)

  • Im, Gyeong-A;Kim, Jong-Guk;Gang, Yong-Jin;Lee, Seung-Hun;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.182-183
    • /
    • 2012
  • Organic light emitting diode (OLED) 나 organic photovoltaic device (OPV)와 같은 유기소자에 전극으로 쓰이고 있는 indium tin oxide (ITO) 박막의 품질을 향상시키기 위해 수소 및 산소의 가스량을 조절하면서 rf power를 이용하여 ITO 박막을 증착한 후 전기적, 광학적 특성을 관찰하여 보았다. 또한 ITO 박막의 대면적화 및 양산화를 위하여 Roll to Roll 장비를 적용하였다. 산소 분율 0.3%에서 두께 180 nm 와 면저항 21 ohm/sq.를 나타냈으며 수소 분율 0.8%에서 두께 180 nm, 면저항 22 ohm/sq.이 관찰되었다. 또한 산소 분율 0.3%로 고정한 후 수소 분율을 변화시키며 관찰한 결과 수소분율 0.3%에서 두께 180 nm, 면저항 19 ohm/sq.를 나타내었다.

  • PDF

Extracion and Photoluminescence Properties of Marine Microalgae for Organic Light Emitting Diode Applications (유기발광소자를 위한 해양 미세조류 유래 물질 및 광 발광 탐색)

  • Jung, Sang-Mok;Lee, Han-Seong;Kang, Seul-Gi;Lee, Han-Joo;Son, Ji-Su;Jeon, Jae-Hyuk;Chae, Hee-Baik;Shin, Hyun-Woung
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.564-569
    • /
    • 2015
  • In order to discover materials that can be used for OLED, extractions of marine microalgae was screened for photoluminescence(PL) properties and analyzed using gas chromatography-mass spectrometry(GC-MS). The extractions of Nitzschia denticula, Navicula cancellata and Nannochloropsis salina showed PL spectroscopy among fourteen marine microalgae species. The selected three fractions from three microalgae were analyzed by GC-MS. According to the results, it was found that the identified organic light-emitting materials can be subdivided into three functional groups based on imidazole, purine and quinoline. These chemicals are considered to have a strong relationship with PL spectroscopy for OLED materials.

TRIZ-based Improvement of Glass Thermal Deformation in OLED Deposition Process (트리즈 기반 OLED 증착 공정의 글래스 열 변형 개선)

  • Lee, Woo-Sung;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2017
  • The global small and mid-sized display market is changing from thin film transistor-liquid crystal display to organic light emitting diode (OLED). Reflecting these market conditions, the domestic and overseas display panel industry is making great effort to innovate OLED technology and incease productivity. However, current OLED production technology has not been able to satisfy the quality requirement levels by customers, as the market demand for OLED is becoming more and more diversified. In addition, as OLED panel production technology levels to satisfy customers' requirement become higher, product quality problems are persistently generated in OLED deposition process. These problems not only decrease the production yield but also cause a second problem of deteriorating productivity. Based on these observations, in this study, we suggest TRIZ-based improvement of defects caused by glass pixel position deformation, which is one of quality deterioration problems in small and medium OLED deposition process. Specifically, we derive various factors affecting the glass pixel position shift by using cause and effect diagram and identify radical reasons by using XY-matrix. As a result, it is confirmed that glass heat distortion due to the high temperature of the OLED deposition process is the most influential factor in the glass pixel position shift. In order to solve the identified factors, we analyzed the cause and mechanism of glass thermal deformation. We suggest an efficient method to minimize glass thermal deformation by applying the improvement plan of facilities using contradiction matrix in TRIZ. We show that the suggested method can decrease the glass temperature change by about 23% through an experiment.

Fabrication of Blue OLED with GDI Host and Dopant (GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작)

  • Jang, Ji-Geun;Shin, Se-Jin;Kang, Eui-Jung;Kim, Hee-Won;Seo, Dong-Gyoon;Lim, Yong-Gyu;Chang, Ho-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

Fabrication of Spherical Microlens Array Using Needle Coating for Light Extraction of OLEDs (니들 코팅을 이용한 OLED 광 추출용 구형 마이크로렌즈 어레이 제작)

  • Kim, Juan;Shin, Youngkyun;Kim, Gieun;Hong, Songeun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.25-31
    • /
    • 2022
  • By an aid of needle coating, we have fabricated a spherical microlens array using poly(methyl methacrylate) for potential applications in light extraction of organic light-emitting diodes. With an attempt to achieve high-density and high-aspect-ratio microlens arrays, we have investigated the coating behaviors by varying the material parameters such as the solute concentration and wettability of the poly(methyl methacrylate) solution and process parameters such as the dwell time of needle near the substrate, retract distance of needle from the substrate, and coating gap between the needle and substrate. Under the optimized coating conditions, it is demonstrated that high-aspect-ratio microlens arrays can be obtained using a coating solution with high solute concentration and a small amount of a hydrophobic solvent. It is found that the diameter and height of microlens array are decreased with increasing poly(methyl methacrylate) concentration, yet the overall aspect ratio is rather enhanced. By the addition of 5 wt% hexylamine in 35 wt% poly(methyl methacrylate) solution, we have achieved a spherical microlens with the height of 7.7 ㎛ and the width of 94.24 ㎛ (the aspect ratio of 0.082). To estimate the capability of light extraction by the microlens array, we have performed ray tracing simulations and demonstrated that the light extraction efficiency of organic light-emitting diode is expected to be enhanced up to 24%.