• Title/Summary/Keyword: OLED(Organic Light-Emitting Diode)

Search Result 289, Processing Time 0.026 seconds

Characteristics of blue phosphorescent OLED with PVK host layer. (PVK Host를 이용한 청색인광 OLED의 특성)

  • Lee, Sun-Hee;Jo, Min-Ji;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • We have developed blue phosphorescent organic light emitting diode using spin-coated poly(9-vinylcarbazole) (PVK) host layer doped with blue phosphorescent material, Iridium(III) bis(4,6-difluorophenyl)-pyridinato-N,C2) picolinate (FIrpic). the concentration of FIrpic dopants was varied from 2% to 10%. The electrical and optical characteristics of the blue phosphorescent OLED with PVK:FIrpic layer were investigated.

  • PDF

Analysis of the Characteristics of a White OLED using the Newly Synthesized Blue Emitting Material nitro-DPVT by Varying the Doping Concentrations of Fluorescent Dye and the Thickness of the NPB Layer (신규 합성한 청색발광재료 nitro-DPVT를 사용한 백색 유기발광다이오드의 형광색소 도핑농도 및 NPB 층의 두께 변화에 따른 특성 분석)

  • Jeon, Hyeon-Sung;Cho, Jae-Young;Oh, Hwan-Sool;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.379-385
    • /
    • 2006
  • A stacked white organic light-emitting diode (OLED) having a blue/orange emitting layer was fabricated by synthesizing nitro-DPVT, a new derivative of the blue-emitting material DPVBi on the market. The white-emission of the two-wavelength type was successfully obtained by using both nitro-DPVT for blue~emitting material, orange emission as a host material and Rubrene for orange emission as a guest material. The basic structure of the fabricated white OLED is glass/ITO/NPB$(200{\AA})$/nitro-DPVT$(100{\AA})$/nitro-DPVT:$Rubrene(100{\AA})/BCP(70{\AA})/Alq_3(150{\AA})/Al(600{\AA})$. To evaluate the. characteristics of the devices, firstly, we varied the doping concentrations of fluorescent dye Rubrene from 0.5 % to 0.8 % to 1.3 % to 1.5 % to 3.0 % by weight. A nearly pure white-emission was obtained in CIE coordinates of (0.3259, 0.3395) when the doping concentration of Rubrene was 1.3 % at an applied voltage of 18 V. Secondly, we varied the thickness of the NPB layer from $150{\AA}\;to\;200{\AA}\;to\;250{\AA}\;to\;300{\AA}$ by fixing doping with of Rubrene at 1.3 %. A nearly pure white-emission was also obtained in CIE coordinates of (0.3304, 0.3473) when the NPB layer was $250-{\AA}$ thick at an applied voltage of 16 V. The two devices started to operate at 4 V and to emit light at 4.5 V. The external quantum efficiency was above 0.4 % when almost all of the current was injected.

Properties of high efficiency 2-${\lambda}$ white organic light emitting diode (고 효율 2파장 백색 유기 발광 소자의 발광 특성)

  • Lee, Oun-Gyu;Oh, Young-Jun;Ko, Young-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.324-325
    • /
    • 2006
  • In order to develop high efficiency white organic light-emitting diodes (OLEDs), OLED devices consisted of red and blue emitting layers (EMLs) were fabricated and the effect of respective layer thickness and the order of layer stacking on the luminous efficiency was evaluated Red/blue structure showed higher efficiency than blue/red, due to the higher exiton formation. In the blue layer of red/blue structure. However, the efficiency of the red/blue significantly depended on the thickness of the red layer, whereas the thickness of the blue layer was not affect so much. The optimum thickness of the red layer was 20 ${\AA}$, where the luminous and power efficiencies were 155 cd/A and 10.51 lm/W at 1000~3000$cd/m^2$ respectively and the maximum luminance was about 80,000 $cd/m^2$.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Efficiency Enhancement of Organic Light Emitting Diode Using $TiO_2$ Buffer Layer

  • Lee, Heui-Dong;Oh, Min-Cheol;Kim, Jae-Chang;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.632-635
    • /
    • 2004
  • We have studied the effect of $TiO_2$ layer deposited by RF magnetron sputtering which is used as an ultra thin hole-injection buffer layer in organic light-emitting diode (OLED). The $TiO_2$ thin film layer prevents metallic ions from diffusing from the ITO layer to the organic layers and improves the balance of hole and electron injections and the interface characteristics between the electrode and the organic layer. With 2 nm thickness of $TiO_2$, the quantum efficiency was improved by 45 % compared to the device fabricated without the $TiO_2$ layer.

  • PDF

Characteristics of amorphous IZO anode based flexible organic light emitting diodes (비정질 IZO 애노드 박막을 이용한 플렉서블 유기발광소자 특성)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Kim, Han-Ki;Kang, Jae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.491-492
    • /
    • 2006
  • We report on the fabrication of organic-based flexible display using an amorphous IZO anode grown at room temperature. The IZO anode films were grown by a conventional DC reactive sputtering on polycarbonate (PC) substrate at room temperature using a synthesized IZO target in a Ar/$O_2$ ambient. X-ray diffraction examination results show that the IZO anode film grown at room temperature is complete amorphous structure due to low substrate temperature. It is shown that the $Ir(ppy)_3$ doped flexible organic light emitting diode (OLED) fabricated on the IZO anode exhibit comparable current-voltage-luminance characteristics to OLED fabricated on conventional ITO/glass substrate. These findings indicate that the IZO anode film grown on PC substrate is a promising anode materials for the fabrication of organic based flexible displays.

  • PDF

OLED Lighting System Integrated with Optical Monitoring Circuit (광 검출기가 장착된 OLED 조명 시스템)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

Hysteresis Phenomenon of Hydrogenated Amorphous Silicon Thin Film Transistors for an Active Matrix Organic Light Emitting Diode (능동형 유기 발광 다이오드(AMOLED)에서 발생하는 수소화된 비정질 실리콘 박막 트랜지스터(Hydrogenated Amorphous Silicon Thin Film Transistor)의 이력 (Hysteresis) 현상)

  • Choi, Sung-Hwan;Lee, Jae-Hoon;Shin, Kwang-Sub;Park, Joong-Hyun;Shin, Hee-Sun;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.112-116
    • /
    • 2007
  • We have investigated the hysteresis phenomenon of a hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and analyzed the effect of hysteresis phenomenon when a-Si:H TFT is a pixel element of active matrix organic light emitting diode (AMOLED). When a-Si:H TFT is addressed to different starting gate voltages, such as 10V and 5V, the measured transfer characteristics with 1uA at $V_{DS}$ = 10V shows that the gate voltage shift of 0.15V is occurred due to the different quantities of trapped charge. When the step gate-voltage in the transfer curve is decreased from 0.5V to 0.05V, the gate-voltage shift is decreased from 0.78V to 0.39V due to the change of charge do-trapping rate. The measured OLED current in the widely used 2-TFT pixel show that a gate-voltage of TFT in the previous frame can influence OLED current in the present frame by 35% due to the change of interface trap density induced by different starting gate voltages.

High-efficiency Organic Light-emitting Diodes(OLEDs) with optimized multilayer transparent electrodes

  • Yun, Chang-Hun;Cho, Hyun-Su;Yoo, Seung-Hyup
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.52-56
    • /
    • 2010
  • High-efficiency organic light-emitting diodes (OLEDs) based on multilayer transparent electrodes (MTEs) are reported. The dielectric/metal/dielectric (DMD) multilayer electrode based on a thin silver layer achieved high sheet conductance as small as $6{\Omega}/sp$ and a tuning capability in the optical and electrical properties by engineering the inner and outer dielectric layers. In the conventional normal bottom-emitting structure, a DMD-based OLED can be fabricated with 90% higher forward luminous efficiency and 30% higher external quantum efficiency (EQE) compared to ITO-based devices. Special attention was paid to the optimization method of such MTE structure considering both the injection and optical structures.

Improvement of the permeation properties with a thin hybrid - passivation layer to apply the Large-sized Organic Display Devices

  • Lee, Joo-Won;Bea, Sung-Jin;Park, Jung-Soo;Lee, Young-Hoon;Chin, Byung-Doo;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1779-1783
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the UV curable acrylate layer and MS-31 (MgO:SiO2=3:1wt%) layer was adopted in organic light emitting diode (OLED) to protect organic light emitting materials from penetrations of oxygen and water vapors. The moisture resistance of the deposited HTF layer was measured by the water vapor transmission rate (WVTR). The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007g/m^2$ per day at $37.8^{\circ}C$ and 100% RH. Therefore, the HTF on the OLED was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF