• Title/Summary/Keyword: OGD/reperfusion

Search Result 11, Processing Time 0.022 seconds

Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures

  • Jung, Yeon Joo;Suh, Eun Cheng;Lee, Kyung Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.423-429
    • /
    • 2012
  • Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.

Gene Expression Profile in Microglia following Ischemia-Reperfusion Injury

  • Oh, Ju-Hyeon;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Microglial activation is thought to play a role in the pathogenesis of many brain disorders. Therefore, understanding the response of microglia to noxious stimuli may provide insights into their role in disorders such as stroke and neurodegeneration. Many genes involved in this response have been identified individually, but not systematically. In this regards, the microarray system permitted to screen a large number of genes in biological or pathological processes. Therefore, we used microarray technology to evaluate the effect of oxygen glucose deprivation (OGD) and reperfusion on gene expression in microglia under ischemia-like and activating conditions. Primary microglial cultures were prepared from postnatal mice brain. The cells were exposed to 4 hrs of OGD and 1 h of reperfusion at $37^{\circ}C$. Isolated mRNA were run on GeneChips. After OGD and reperfusion, >2-fold increases of 90 genes and >2-fold decrease of 41 genes were found. Among the genes differentially increased by OGD and reperfusion in microglia were inflammatory and immune related genes such as prostaglandin E synthase, $IL-1{\beta}$, and $TNF-{\alpha}$. Microarray analysis of gene expression may be useful for elucidating novel molecular mediators of microglial reaction to reperfusion injury and provide insights into the molecular basis of brain disorders.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis

  • Chen, Leijie;Yan, Laixing;Zhang, Weiwei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2022
  • Heart failure (HF) has become one of the severe public health problems. The detailed role of mitochondrial function in HF was still unclear. Benzoylaconine (BAC) is a traditional Chinese medicine, but its role in HF still needs to be explored. In this study, oxygen-glucose deprivation and reperfusion (OGD/R) was executed to mimic the injury of H9C2 cells in HF. The viability of H9C2 cells was assessed via MTT assay. OGD/R treatment markedly decreased the viability of H9C2 cells, but BAC treatment evidently increased the viability of OGD/R-treated H9C2 cells. The apoptosis of H9C2 was enhanced by OGD/R treatment but suppressed by BAC treatment. The mitochondrial membrane potential was evaluated via JC-1 assay. BAC improved the mitochondrial function and suppressed oxidative stress in OGD/R-treated H9C2 cells. Moreover, Western blot analysis revealed that the protein expression of p-AMPK and PGC-1α were reduced in OGD/R-treated H9C2 cells, which was reversed by BAC. Rescue assays indicated that AMPK attenuation reversed the BAC-mediated protective effect on OGD/R-treated cardiomyocytes. Moreover, BAC alleviated myocardial injury in vivo. In a word, BAC modulated the mitochondrial function in OGD/R-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. The findings might provide support for the application of BAC in the treatment of HF.

Neuroprotective Effects of Stachys sieboldii Miq. Extract Against Ischemia/reperfusion-induced Apoptosis in SH-SY5Y Neuroblastoma Cells (허혈-재관류 유도 신경세포사멸에 대한 초석잠 추출물의 신경보호 효과 연구)

  • Young-Kyung Lee;Chul Hwan Kim;Su Young Shin;Buyng Su Hwang;Min-Jeong Seo;Hye Jin Hwang;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.76-76
    • /
    • 2020
  • Stachys sieboldii Miq. (chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of Stachys sieboldii Miq. (SSM) in cerebral ischemia/reperfusion (I/R) injury is not yet fully understood. In the current study, the neuroblastoma cell line (SH-SY5Y) were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury in vitro model. The results showed that SSM improved OGD/R-induced inhibitory effect on cell viability of SH-SY5Y Cells. SSM displayed anti-oxidative activity as proved by the decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in OGD/R-induced SH-SY5Y Cells. In addition, cell apoptosis was markedly decreased after SSM treatment in OGD/R-induced SH-SY5Y Cells. The up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, SSM protected human neuroblastoma SH-SY5Y cells from OGD/R-induced injury via preventing mitochondrial-dependent pathway through scavenging excessive ROS, suggesting that SSM might be a potential agent for the ischemic stroke therapy.

  • PDF

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways

  • Qu, Youyang;Liu, Yu;Zhu, Yanmei;Chen, Li;Sun, Wei;Zhu, Yulan
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.837-846
    • /
    • 2017
  • As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.

Stachys sieboldii M iq. Protects SH-SY5Y Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Inhibition of Mitochondrion-Mediated Apoptosis Pathway (허혈-재관류 유도 SH-SY5Y 모델에서 미토콘드리아 매개 Apoptosis 기전 제어를 통한 초석잠 추출물의 세포보호 효과)

  • Jin-Woo Jeong;Eun Jung Ahn;Chul Hwan Kim;Su Young Shin;Seung Young Lee;Kyung-Min Choi;Chang-Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.57-57
    • /
    • 2021
  • Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. Stachys sieboldii Miq. (Chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of S. sieboldii Miq. (SSM) in OGD/R induced neuronal injury is not yet fully understood. The present research is aimed to investigate the protective effect and possible mechanisms of SSM extract treatment in an in vitro model of OGD/R to simulate ischemia/reperfusion Injury. Pretreatment of these cells with SSM significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) by increasing GPx, SOD, and decreasing MDA. SSM decreased mitochondrial damage caused by OGD/R injury and inhibited the release of cyt-c from mitochondrion to cytoplasm in SH-SY5Y cells. Furthermore, neuronal cell apoptosis caused by OGD/R injury was inhibited by SSM, and SSM could decrease apoptosis by increasing ratio of Bcl-2/Bax and inhibiting caspase signaling pathway in SH-SY5Y cells. SSM demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro model, and this effect was the inhibition of mitochondria-mediated apoptosis pathway by scavenging of ROS generation. Therefore, SSM may be a promising neuroprotective strategy against ischemic stroke.

  • PDF

Sertad1 Induces Neurological Injury after Ischemic Stroke via the CDK4/p-Rb Pathway

  • Li, Jianxiong;Li, Bin;Bu, Yujie;Zhang, Hailin;Guo, Jia;Hu, Jianping;Zhang, Yanfang
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.216-230
    • /
    • 2022
  • SERTA domain-containing protein 1 (Sertad1) is upregulated in the models of DNA damage and Alzheimer's disease, contributing to neuronal death. However, the role and mechanism of Sertad1 in ischemic/hypoxic neurological injury remain unclear. In the present study, our results showed that the expression of Sertad1 was upregulated in a mouse middle cerebral artery occlusion and reperfusion model and in HT22 cells after oxygen-glucose deprivation/reoxygenation (OGD/R). Sertad1 knockdown significantly ameliorated ischemia-induced brain infarct volume, neurological deficits and neuronal apoptosis. In addition, it significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Sertad1 knockdown significantly inhibited the ischemic/hypoxic-induced expression of p-Rb, B-Myb, and Bim in vivo and in vitro. However, Sertad1 overexpression significantly exacerbated the OGD/R-induced inhibition of cell viability and apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. In further studies, we demonstrated that Sertad1 directly binds to CDK4 and the CDK4 inhibitor ON123300 restores the effects of Sertad1 overexpression on OGD/R-induced apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. These results suggested that Sertad1 contributed to ischemic/hypoxic neurological injury by activating the CDK4/p-Rb pathway.

Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice

  • Han, Yuli;Li, Xuewang;Yang, Liu;Zhang, Duoduo;Li, Lan;Dong, Xianan;Li, Yan;Qun, Sen;Li, Weizu
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.515-525
    • /
    • 2022
  • Background: The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods: A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca2+]i. The open-field test and poleclimbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca2+]i. Results: Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion: Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation.