• Title/Summary/Keyword: OFDMA(orthogonal frequency division multiple access)

Search Result 141, Processing Time 0.025 seconds

A Study on the security demand and Handoff of the pocket Internet (Wibro) with MIPv6 (MIPv6 의한 휴대인터넷(Wibro)의 보안요구 및 Handoff에 관한 연구)

  • Lee, Cheong-Jin;Kim, Do-Hwan;Kwon, Oh-Heung
    • Journal of Digital Contents Society
    • /
    • v.7 no.3
    • /
    • pp.161-168
    • /
    • 2006
  • Wibro(Wibro - Wireless Broadband Internet ) is a system that can accept effectively the IP-based Wireless data traffic with upward / downward asymmetric transfer characteristic by using a Wirelss broadband transfer technology in OFDMA/TDD (Orthogonal frequency Division Multiple Access/Time Division Duplex). Wibro service should support handover to maintain connection continuously in movement because the service is based on If system which is different from cellular system. Current Micro Mobility system and general Mobile If system has got a problem of delayed speed and lost packets during handover. IETF protocol has been proposed for minimizing this problem and its standardization is under process, mainly focused on Mip4, Mip6 and Mipshop WG. This article studies and analyzes an effective method of minimizing handover delay to improve the problem of WiBro system and its revitalization & outlook.

  • PDF

Distributed Synchronization for OFDMA-Based Wireless Mesh Networks

  • Kim, Jihyung;Kim, Jung-Hyun;Lim, Kwangjae
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper, we propose a distributed synchronization algorithm for wireless mesh networks based on orthogonal frequency division multiple access. For time and frequency synchronization, a node requests its neighbor nodes for a change of fast Fourier transform starting points, transmission times, and carrier frequencies needed for synchronization. The node also updates its own time and frequency elements through simple formulas based on request messages received from neighbor nodes using a guard interval and a cyclic prefix. This process with the cooperation of neighbor nodes leads to a gradual synchronization of all nodes in the network. Through a performance comparison with a conventional scheme, we obtain simulation results indicating that the proposed scheme outperforms the conventional scheme in random topologies and a grid topology.

A Grouping Technique for Synchronous Digital Duplexing Systems (동기식 디지털 이중화 시스템을 위한 그룹핑 기법)

  • Ko, Yo-Han;Park, Chang-Hwan;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.341-348
    • /
    • 2009
  • In this paper, we propose a grouping technique for the SDD(Synchronous Digital Duplexing) based on OFDMA(Orthogonal Frequency Division Multiple Access). The SDD has advantages of increasing data efficiency and flexibility of resource since SDD can transmit uplink signals and downlink signals simultaneously by using mutual time information and mutual channel information, obtained during mutual ranging process. However, the SDD has a disadvantage of requiring additional CS to maintain orthogonality of OFDMA symbols when the sum of mutual time difference and mutual channel length between AP(access point) and SS(subscriber station) or among SSs are larger than CP length. In order to minimize the length of CS for the case of requiring additional CS in SDD, we proposes a grouping technique which controls transmit timing and receive timing of AP and SS in a cell by classifying them into groups. Performances of the proposed grouping technique are evaluated by computer simulation.

Derivation of Union Upper Bound on BER of BICM System Employing Non-Gaussian Decoding Metric for Downlink CellularOFDMA Networks (직교 주파수 분할 다중 접속 방식을 사용하는 하향 링크 셀룰러 시스템의 비가우시안 복호 성능에 대한 상계 유도)

  • Son, Jae-Yong;Cheun, Kyung-Whoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.522-527
    • /
    • 2012
  • In this paper, union upper bound on convolutional coded bit error rates (BER) is derived for downlink orthogonal frequency division multiple access (OFDMA) networks. According to the numerical results, for the small network loads, the BER performance with Laplacian decoding metric outperforms the BER performance with Gaussian decoding metric under downlink OFDMA networks with Viterbi decoder.

Sub-channel Allocation Based on Multi-level Priority in OFDMA Systems

  • Lee, JongChan;Lee, MoonHo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1876-1889
    • /
    • 2013
  • Packet-based mobile multimedia services for the Internet differ with respect to their resource requirements, performance objectives, and resource usage efficiencies. Nonetheless, each mobile terminal should support a variety of multimedia services, sometimes even simultaneously. This paper proposes a sub-channel allocation scheme based on multi-level priority for supporting mobile multimedia services in an Orthogonal Frequency Division Multiple Access (OFDMA) system. We attempt to optimize the system for satisfying the Quality of Service (QoS) requirements of users and maximize the capacity of the system at the same time. In order to achieve this goal, the proposed scheme considers the Signal-to-Interference-plus-Noise Ratio (SINR) of co-sub-channels in adjacent cells, the Signal-to-Noise Ratio (SNR) grade of each sub-channel in the local cell on a per-user basis, and the characteristics of the individual services before allocating sub-channels. We used a simulation to evaluate our scheme with the performance measure of the outage probabilities, delays, and throughput.

A Fast Converged Solution for Power Allocation of OFDMA System

  • Hwang, Sungho;Cho, Ho-Shin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.721-725
    • /
    • 2014
  • In this paper, we propose a fast adaptive power allocation method for an orthogonal frequency division multiple access (OFDMA) system that employs an adaptive modulation and coding (AMC) scheme. The proposed scheme aims to reduce the calculation complexity of greedy adaptive power allocation (APA), which is known as the optimal algorithm for maximizing the utility argument of power. Unlike greedy APA, which starts power allocation from "0", the proposed algorithm initially allocates a certain level of power determined by the water-filling scheme. We theoretically demonstrate that the proposed algorithm has almost the same capability of maximizing the utility argument as the greedy APA while reducing the number of operations by 2M, where M is the number of AMC levels.

Sum-Capacity Analysis of Multiple-Sensor Node Underwater Communications Using Time Reversal Transmission Method (시역전 기법을 이용한 다중 센서 노드 환경에서의 합용량 해석)

  • Cho, Jung-Il;Seo, Jong-Pil;An, Jae-Jin;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.295-302
    • /
    • 2010
  • This paper proposes a multiple access method based on Time Reversal Mirror (TRM) technique when the multiple sensor nodes exist. Proposed method increases system sum capacity using energy focusing effects of the TRM. Simulation results show that proposed algorithm obtains higher system sum capacity than Orthogonal Frequency Division Multiple Access (OFDMA), e.g., 27 bps/Hz higher than the OFDMA method when the number of sensor node is 30, the number of transducer is 8, and is SINR 16 dB.

Large-Scale Joint Rate and Power Allocation Algorithm Combined with Admission Control in Cognitive Radio Networks

  • Shin, Woo-Jin;Park, Kyoung-Youp;Kim, Dong-In;Kwon, Jang-Woo
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • In this paper, we investigate a dynamic spectrum sharing problem for the centralized uplink cognitive radio networks using orthogonal frequency division multiple access. We formulate a large-scale joint rate and power allocation as an optimization problem under quality of service constraint for secondary users and interference constraint for primary users. We also suggest admission control to nd a feasible solution to the optimization problem. To implement the resource allocation on a large-scale, we introduce a notion of using the conservative factors $\alpha$ and $\beta$ depending on the outage and violation probabilities. Since estimating instantaneous channel gains is costly and requires high complexity, the proposed algorithm pursues a practical and implementation-friendly resource allocation. Simulation results demonstrate that the large-scale joint rate and power allocation incurs a slight loss in system throughput over the instantaneous one, but it achieves lower complexity with less sensitivity to variations in shadowing statistics.

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

Coverage Enhancement in TDD-OFDMA Downlink by using Simple-Relays with Resource Allocation and Throughput Guarantee Scheduler (TDD-OFDMA 하향링크에서의 단순 릴레이를 이용한 자원 할당과 수율 보장 스케줄러를 사용한 서비스 커버리지 향상에 관한 연구)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.275-281
    • /
    • 2006
  • Simple-relay aided resource allocation (SRARA) schemes are incorporated with throughput guarantee scheduling (TGS) in IEEE 802.16 type time division duplex - orthogonal frequency division multiple access (TDD-OFDMA) downlink in order to enhance service coverage, where the amount of resources for relaying at each relay is limited due to either its available power which is much smaller than base station (BS) power or the overhead required for exchanging feedback information. The performance of SRARA schemes is evaluated with schedulers such as proportional fair (PF) and TGS at 64kbps and 128kbps user throughput requirements when total MS power is set to 500mW or 1 W. For 64kbps throughput requirement level, more improvement comes from relay than scheduler design. For 128kbps case, it comse from scheduler design than relay due to the fact that simple relay can't help using strictly limited amount of resources for relaying function.

  • PDF