• Title/Summary/Keyword: OFDMA(orthogonal frequency division multiple access)

Search Result 141, Processing Time 0.187 seconds

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

An Enhanced Scheme with CFO and SFO in OFDMA system (OFDMA 시스템에서 SFO와 CFO 저감 기법에 관한 연구)

  • Lee, Young-Gwang;Lee, Kyu-Seop;Choi, Gin-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Recently, orthogonal frequency-division multiplexing(OFDM), with clusters of subcarriers allocated to different subscribers(often referred to as OFDMA), has gained much attention for its ability in enabling multiple-access wireless multimedia communications. In such systems, carrier frequency offsets (CFOs) can destroy the orthogonality among subcarriers. And the mismatch in sampling frequencies between transmitter and receiver can lead to serious degradation due to the loss of orthogonality between the subcarriers. As a result, multiuser interference (MUI) along with significant performance degradation can be induced. In this paper, we present a scheme to compensate for the SFOs and CFOs at the base station of an OFDMA system. A novel sampling frequency offset estimation algorithm is proposed, which is based on the repetition of a symbol at the communication start-up. Then, circular convolutions are employed to generate the interference after the discrete Fourier transform processing, which is then removed from the original received signal to increase the signal to interference power ratio(SIR). Simulation result shows that the proposed scheme can improve system performance.

An Overlaid Hybrid-Division Duplex OFDMA System with Multihop Transmission

  • Sang, Young-Jin;Park, Jung-Min;Kim, Seong-Lyun;Kim, Kwang-Soon
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.633-636
    • /
    • 2011
  • In this letter, we propose an overlaid hybrid division duplex (HDD) concept for cellular systems which divides a cell into inner and outer regions and utilizes the merits of both time division duplex (TDD) and frequency division duplex (FDD). The proposed system can take advantage of both TDD and FDD without handover between two duplex schemes. Moreover, it is shown that the proposed HDD system outperforms the conventional TDD or FDD system with mobile relay stations when the synchronization issue is considered in orthogonal frequency division multiple access systems. Thus, the proposed overlaid HDD can be considered as a new framework for future cellular systems.

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Performance Analysis of OFDMA Uplink Systems with Symbol Timing Misalignment (사용자간 상대적인 시간오차에 의한 OFDMA 역방향 시스템의 성능 분석)

  • Park Myonghee;Hong Daesik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents our investigation for the effect of symbol timing errors in orthogonal frequency division multiple access (OFDMA) uplink systems. We express the symbol timing errors between users as the symbol timing misalignments with respect to the desired user. Then, we derive an explicit expression of the average effective signal-to-interference-plus-noise ratio. (SINR) as a function of the maximum value of the symbol timing misalignments. Based on the resulting SINR degradation, we evaluate the SINR gain with guard subcarriers in order to mitigate the effect of the symbol timing misalignments.

Channel State-Aware Joint Dynamic Cell Coordination Scheme using Adaptive Modulation and Variable Reuse Factor in OFDMA (OFDMA 하향링크에서 적응적 변조와 여러 개의 재사용 지수를 동시에 사용하고 채널 상태를 고려한 동적 셀 코디네이션)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.24-33
    • /
    • 2007
  • In this paper, two different dynamic cell coordination strategies for frequency flat and selective fading are proposed for efficient subcarrier allocation in the joint consideration of adaptive modulation and variable frequency reuse in the channel-aware OFDMA downlink multicellular environment. Compared to a conventional OFDMA system without cell coordination, where system throughput may become degraded due to the persistent interference from other cells, the proposed system dynamically allows RNC to apply different reuse factors on each subchannel and scheduling in consideration of channel and interference conditions of individual users so as to increase the system throughput and guarantee QoS of each user. In a frequency flat fading, the dynamic scheme with the proposed scheduling achieves on average three times larger throughput than the conventional dynamic scheme [8]. In a selective fading channel, the proposed schemes showed 2.6 times as large throughput as that of a single reuse factor of one for all subchannels.

An efficient channel allocation for video transmission in OFDMA systems (OFDMA 시스템에서 비디오 전송을 위한 효율적인 채널 할당)

  • Lee, Sang-Jae;Kim, Se-Heon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.325-329
    • /
    • 2007
  • The mobile and multimedia service on wireless network have been leaded from the improvement of telecommunication techniques. A typical multimedia service, a video transmission usually requires larger bandwidth than voice transmission. Many channel allocation algorithms for Orthogonal Frequency Division Multiple Access (OFBMA) to use resources more efficiently, Previous channel allocation algorithms have developed with an assumption that the data traffic is constant bit rate (CBR). However, existing algorithms are not suitable to video traffic because it usually generates a variable bit rate (VBR) traffic. In this paper, we proposed a new channel allocation algorithm called a queue-based channel allocation. it is more suitable to transmit the video traffics. Also, a problem are notified in case of realtime generated video traffic and a corresponding heuristic solution was proposed.

  • PDF

Optimal Carrier Loading for the Enhancement of Visual Quality over OFDMA Cellular Networks (무선 셀룰러 네트워크에서 다층 코딩을 이용하여 비디오 화질을 향상하기 위한 자원할당 기법 연구)

  • Jang, Uk;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.247-248
    • /
    • 2008
  • A recent dynamic increase in demand for wireless multimedia services has greatly accelerated the research on dynamic channel adaptation of high quality video applications. In this paper, we explore a theoretical approach to cross-layer optimization between multimedia and wireless networks by means of a quality criterion termed "visual throughput" for downlink video transmission using a layered coding algorithm. We obtain the optimal loading ratio of orthogonal frequency division multiple access (OFDMA) subcarriers through an optimization problem balancing the trade-off relationship between inter-cell interference (ICI) and channel throughput. In the simulation, we show that the visual throughput gain at the cell boundary is increased by about 32%.

  • PDF

A Novel Channel Estimation using 2-Dimensional Linear Iinterpolation for OFDM MIMO systems (2차원 선형보간법을 이용한 OFDM MIMO 시스템에서의 채널 추정)

  • Oh, Tae Youl;Ahn, Sung Soo;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • An OFDMA(Orthogonal Frequency Division Multiple Access) includes a MIMO(Multi-Input Multi-Output) scheme for improving spectral efficiency and data throughput. Recognizing that the performance of MIMO system is heavily dependent upon the accuracy of channel estimation, we propose a novel channel estimation for the MIMO scheme based on OFDMA. Conventional interpolation-based channel estimation suffers from poor estimation error at specific subcarriers. Proposed scheme makes use of a planar interpolation instead of linear interpolation for those subcarriers of bad accuracy. Simulation results show that the proposed scheme improves the performance of MIMO system by improving the accuracy in channel estimation especially for the adverse subcarrier positions. It is observed that the proposed scheme outperforms the conventional method by about 2dB in terms of both mean squared error and overall bit error rate with a reasonable computational complexity.

A New Resource Allocation with Rate Proportionality Constraints in OFDMA Systems (OFDMA 시스템에서 비율적 전송률 분배를 위한 자원 할당)

  • Han, Seung-Youp;Oh, Eun-Sung;Han, Myeong-Su;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • In this paper, a new adaptive resource allocation scheme is proposed in orthogonal frequency-division multiple access(OFDMA) systems with rate proportionality constraints. The problem of maximizing the overall system capacity with constraints on bit error rate, total transmission power and rate-proportionality for user requiring different classes of service is formulated. Since the optimal solution to the constrained fairness problem is extremely complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. Firstly, the number of subchannels to be assigned to each user is determined based on the users' average signal-to-noise ratio and rate-proportion. Subchannels are subsequently distributed according to the modified max-min criterion. Lastly, based on the subchannel allocation, the optimal power allocation by solving the Language dual problem is proposed. Additionally, in order to reduce the computational complexity, iterative rate proportionality tracking algorithm is proposed for maximizing the capacity together with maintaining the rate proportionality constraint.