• Title/Summary/Keyword: OFDM-MIMO System

Search Result 186, Processing Time 0.021 seconds

An Analysis of Multiuser Diversity Technology in the MIMO-OFDM System (MIMO-OFDM 시스템에서 다중사용자 다이버시티 기술의 성능분석)

  • Zhang, Ke;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1121-1128
    • /
    • 2019
  • In this paper, we introduce the combination of OFDM(Orthogonal Frequency Division Multiplexing) and MIMO(Multiple-Input Multiple-Output) technology, and explain that this combination seems to be very preferable when designing very high-rate wireless mobile systems. The application of OFDM, with the block diagrams of an OFDM modulator and demodulator and a MIMO-OFDM system, are described. The several diversities are studied at the receiver, analyzed the performances of diversity in OFDM-MIMO system and simulated results.

Performance Evaluation of High-performance MIMO-OFDM System using Carrier Interferometry Codes in Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 반송파 간섭 부호를 이용한 고성능 MIMO-OFDM 시스템의 성능분석)

  • Seo Wan-woo;Chung Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1643-1648
    • /
    • 2005
  • MIMO system takes advantage of the spatial diversity obtained by spatially separated antennas for high- performance and high-capacity broadband wireless access. In this paper, we propose Carrier Interferometry coded MIMO-OFDM system (MIMO-CI/OFDM) which provides frequency and spatial diversity. One combined diversity gains featly improve the performance of OFDM systems. To perform a performance analysis, we have used SPW platform that provides an easy tool to analyze the performance. The results show that the performance of MIMO-CI/OFDM shows an approximately 4dB gain over the MIMO-OFDM even in highly frequency selective fading channels.

Performance analysis of MIMO-OFDM systems with adaptive beamformer (다중 사용자 환경에서 적응 빔 형성기를 가진 MIMO-OFDM 시스템의 성능 분석)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, the new beamforming is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). Through the proposed Pre-FFT beamforming technique for MIMO-OFDM, the multibeams are formed toward each multi-transmitter antenna of the desired user. The proposed beamforming for MIMO-OFDM can reduce cochannel interference and get diversity gain in the multi-user environment. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

Performance Analysis for SVR-MMSE Detection of Constant Modulus Signals in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 Constant Modulus 신호의 SVR-MMSE 검출 성능 분석)

  • Shin, Chul-Min;Seo, Myoung-Seok;Yang, Qing-Hai;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1198-1204
    • /
    • 2006
  • In this paper, we extend SVR-MMSE detection scheme which is proposed in MIMO system to MIMO-OFDM system, and evaluate performance of the system in frequency selective fading channel. First of all, we explain about typical MIMO-OFDM system and detection scheme of constant modulus signals in this system. And compare proposed SVR-MMSE with Zero Forcing, Minimum Mean Square Error which is conventional detection scheme. we identify that the performance of the proposed system is shown different by varying doppler frequency in frequency selective fading channel using jakes channel model. The result of detection performance by the proposed SVR-MMSE in this simulation, it shows that proposed algorithm have a good performance in MIMO-OFDM systems.

Performance Comparison of SFBC/SFTC-OFDM Systems Under MB-OFDM Interference (MB-OFDM UWB 신호 간섭하에서 SFBC/SFTC-OFDM 시스템들의 성능 비교)

  • Kim, Kyung-Seok;Song, Chang-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.968-975
    • /
    • 2006
  • Research about the mode of MIMO that can get a coding benefit at the same time with a diversity benefit using a multiple antenna at the fading channel for a high-speed data transmission have been processed actively But the analysis about the interference of UWB system comes not to consist yet. So this paper analyzed the performance of the interference of UWB system to SFBC-OFDM and SFTC-OFDM system that applied a space block code which has a space diversity characteristic to OFDM system at MIMO channel. We shelved the performance that SFTC-OFDM system is robuster than SFBC-OFDM system under MB-OFDM UWB Interference.

Simplified PAR Reduction Technique for MIMO-OFDM System (MIMO-OFDM 시스템에서 간략화된 PAR 감쇄 기법)

  • Song Hyoung-Kyu;Kook Hyung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1181-1185
    • /
    • 2005
  • A combining of MIMO signal processing with OFDM is regarded as a promising solution of enhancing the performance of next generation wireless system. Therefore, in this paper, an OFDM-based wireless system employing layered space-time architecture is considered for a high-rate transmission. In the MIMO-OFDM system, we evaluate the PAR performance using the SLM approaches. The investigated SLM scheme for MIMO-OFDM signals selects the transmitted sequence with lowest average PAR over all transmitting antennas and retrieves the side information very accurately at the expense of a slight degradation of the PAR performance. The low probability of false side information can improve the overall detection performance of the MIMO-OFDM system with erroneous side information compared to the ordinary SLM approache, respectively. Also, we provide closed form of the average BER performance in MIMO-OFDM system using analytic approach.

Efficient pipelined FFT processor for the MIMO-OFDM systems (MIMO-OFDM 시스템을 위한 효율적인 파이프라인 FFT 프로세서의 설계)

  • Lee, Sang-Min;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1025-1031
    • /
    • 2007
  • This paper proposes an area-efficient pipeline FFT processor for MIMO-OFDM systems with four transmitting and four receiving antennas. Since the MIMO-OFDM system transmits multiple data streams, the complexity for the MIMO-OFDM system with a single-channel FFT processor increases linearly with the increase of the number of transmit channels. The proposed FFT processor is based on multi-channel structure, and therefore it can efficiently support multiple data streams. With the mixed radix algorithm, the number of non-trivial multiplications of the proposed FFT processor is decreased. The proposed FFT processor is synthesized with CMOS $0.18{\mu}m$ process and reduces the logic gates by 25% over a 4-channel Radix-4 multi-path delay commutator (R4MDC) FFT processor. Since the MIMO-OFDM FFT processor is one of the largest modules in the systems, the proposed FFT processor will be a vast contribution improvement to the low complexity design of MIMO-OFDM systems.

Hybrid Symbol Offset Estimation Algorithm for MIMO OFDM Systems (MIMO OFDM 시스템을 위한 하이브리드 심볼 옵셋 추정 알고리즘)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.461-469
    • /
    • 2008
  • This paper proposes a hybrid symbol offset estimation algorithm for MIMO(Multiple Input Multiple Output) OFDM system. As MIMO OFDM systems are multiple transmitter and receiver antenna systems, apart from SISO(Single Input Single Output) system, it is possible to use several combining techniques which are used in multiple receive antenna system. In this paper, we propose hybrid symbol offset estimation algorithms using combining techniques in multiple receive antenna systems, simulate and show the performances in MIMO system environments. The proposed equal gain combining correlation algorithm has better performance 1.8 times in searching the ideal symbol offset rather than the conventional early symbol offset algorithm in severe ISI channel.

OFDM Transmission Method Based on the Beam-Space MIMO System (빔공간 MIMO 시스템에 기반한 OFDM 전송방법)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.425-431
    • /
    • 2015
  • Beamspace Multiple-Input Multiple Output(MIMO) system can transmit multiple data by using Electronically Steerable Parasitic Array Radiator(ESPAR) antenna which has single Radio Frequency(RF)-chain. Beamspace MIMO system can reduce complexity of the system and size of antenna in comparison with the conventional MIMO system because of characteristic of ESPAR antenna using the single antenna and the RF-chain. Heretofore, only the research of transmitting single-carrier has been conducted by the use of beamspace MIMO system. Therefore, in this paper, we propose beamspace MIMO system based on Orthogonal Frequency Division Multiplexing(OFDM) for transmitting the multi-carrier and analysis the performance of this system. We find a proper reactance value which has good performance because proposed system changes the performance by the reactance values of parasitic elements. and we confirm that performance of the proposed system is similar to conventional MIMO system based on OFDM.