• 제목/요약/키워드: OC-1

검색결과 733건 처리시간 0.028초

Concentrations of Carbonaceous Compounds and Quantitation of Secondary Organic Carbon in PM2.5 at Taehwa Research Forest

  • Lee, Seung-Ha;Lee, Sang-Deok;Kim, Dan-Bi;Kim, Rhok-Ho;Lee, Sang-Bo
    • Journal of Forest and Environmental Science
    • /
    • 제34권1호
    • /
    • pp.53-56
    • /
    • 2018
  • Elemental carbon (EC) and organic carbon (OC) mass concentrations in PM2.5 were measured from March through October 2015 in Taehwa Research Forest (TRF). The concentration of carbon in the TRF was $3.4{\mu}g/m^3$ and the concentration of EC was $1.4{\mu}g/m^3$. Also the concentration of $OC_{sec}$ was the highest at $2.84{\mu}g/m^3$ in the summer and the lowest at 1.66 in the spring. The ratio of the secondary generation OC in the total OC was the highest at 62% in the summer. Monthly OC concentration was the lowest at $2.38{\mu}g/m^3$ in April and the highest at $6.60{\mu}g/m^3$ in July. In case of EC concentration was the lowest in April ($0.98{\mu}g/m^3$) and the highest in July ($3.41{\mu}g/m^3$). The OC/EC ratio showed the lowest ratio in March and the highest rate in September. It is suggested that the secondary generation reaction of OC component was active due to sufficient irradiation amount in summer.

ACSR-OC 전선의 단시간 특성 평가 (Assessment of Short-Time Characteristic ACSR-OC Conductor)

  • 이중관;김동명;이수묵
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1446-1448
    • /
    • 2002
  • The short-time permissible temperature of an overhead distribution line conductor is determined by the softening characteristics of ACSR-OC, ACSR AW/OC 160, typical conductors employed in the overhead distribution line. Transient heat transfer equation and Newton's cooling law were applied to analyze the heating and cooling effects of the insulating conductors, respectively, and the error of co-relation was calibrated after simulating the softening test to assess the short-time characteristic of the insulating conductor. In order to verify the softening characteristic, the conductors were tested with heat cycle. The test was totally carried out 200 cycles, and 1 cycle was to heat and cool at 1.1 times permissible current of the conductor, 1.15 times for 120 minutes, respectively. After heating, the tensile strength and surface of the conductor were observed. In case of ACSR-OC, as the result of 100 hour heating test, the tensile strength of the insulator was 0.8 times the initial value. This is equivalent to the value of the conductors which are used for 10 years at sites.

  • PDF

미세입자 ($PM_{2.5}$) 에 포함된 탄소농도계절 특성 (Seasonal characteristics of Elemental and Orgainc Carbon)

  • 강병욱
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.103-112
    • /
    • 2000
  • Elemental carbon(EC) and organic carbon(OC) in fine particles (PM2.5) were collected from October 1995 through August 1996 in the Chongju area. The annual mean concentrations of EC and OC were 4.44 and 4.99 $\mu\textrm{g}$/m3 respectively. EC showed seasonal variation (p<0.01) The magnitude of the seasonal mean EC concen-tration progresses in the following manner : fall>winter>spring>summer. However OC was not statistically seasonal difference(p=0.20) The annual average OC/EC ratio was 1.12 suggesting that organic carbon measured may by emitted directly in particulate form(primary aerosol) The contribution of EC to PM2.5 mass follows a general pattern in which fall(14.6%) > winter (9.8%) >spring(7.8%) =summer(7.8%) and the contribution of OC to the PM2.5 mass varies in order fall(13.8%) >winter(11.3%) >spring(10.5%) >summer (9.4%) Total carbona-ceous particles(EC and OC) accounted for 17-28% of the PM2.5 mass.

  • PDF

Effects of Plant Vinegar Extract on the Reduction of Blood Concentration of Alcohol and Acetaldehyde in Alcohol Administrated Rats

  • Kwon, So-Yeon;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • 제13권2호
    • /
    • pp.107-112
    • /
    • 2005
  • Excessive drinking causes 'alcohol hangover' within 8-16 hours. The cause of 'hangover' has not been elucidated exactly until now, but it is reported that it is caused by the creation of blood ethanol and acetaldehyde as ethanol metabolites. In this study vinegar extract of wood (VE) or OC-1, to which the powder extract of green tea leaves extract is added, was administered to the rats 30 minutes before the oral administration of ethanol (3 g/kg) and the blood ethanol and acetaldehyde concentration was measured in order to evaluate the efficacy of the beverage material for detoxification. As a result, the blood ethanol concentration in the group of the VE-1(vinegar crude extract) and VE-2 (double diluted solution) is statistically lower (P,0.05) than the exclusive alcohol administered control group. The blood acetaldehyde concentration of all groups of VE and OC-2, which is the double dilution of OC-1, is statistically low after 7 hours following ethanol administration. Especially, the AUC value of OC-2 group is statistically low compared to the control group. Accordingly, it indicates the conclusion that VE and OC-1, reducing the blood ethanol and acetaldehyde concentration which are two leading factors of 'hangover' after drinking, and worthwhile to be developed as beverage materials to eliminate 'hangover'.

여과지를 이용한 유기탄소의 측정 오차 보정 (Filter-based Correction for Positive Sampling Artifacts in the Determination of Ambient Organic Carbon)

  • 강병욱;연익준;조병렬;박상찬;이학성;전준민;나광삼
    • 한국대기환경학회지
    • /
    • 제27권1호
    • /
    • pp.63-72
    • /
    • 2011
  • This study describes the impact of positive sampling artifact caused by a filter-based sampling in the determination of ambient organic carbon (OC). Three different sampling media combinations were employed for this investigation: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), and (3) quartz filter and quartz filter behind Teflon filter (Q-QBT). The measurement of ambient OC was carried out at a semi-urban site near oceanside at the end of November of 2008. It was found that Q-alone sampling configuration resulted in a higher OC than QBQ and Q-QBT by 14% and 28%, respectively due to no correction for positive artifact caused by adsorption of gas-phase OC onto the filter. A lower quantity of OC was collected from the backup quartz filter on QBQ than that from Q-QBT. A possible explanation is that the front quartz filter of QBQ was not fully saturated with gas-phase OC during the sampling period, allowing smaller amount of gas-phase OC to reach the backup quartz filter. The contribution of positive artifact to $PM_{2.5}$ mass was approximately 2.15 ${\mu}g/m^3$ which is equivalent to 6% in terms of Q-QBT sampling configuration. The positive artifact was found to be more dominated during summer than during winter, showing temperature dependence. It was concluded that Q-QBT sampling configuration offers less impact of positive artifact on ambient OC sampling than QBQ in quantification of OC.

Effects of Photoperiod, Temperature, and Fish Size on Oxygen Consumption in the Black Porgy Acanthopagrus schlegeli

  • Chang Young Jin;Jeong Min Hwan;Min Byung Hwa;Neill William H.;Fontaine Lance P.
    • Fisheries and Aquatic Sciences
    • /
    • 제8권3호
    • /
    • pp.142-150
    • /
    • 2005
  • The effects of photoperiod, temperature, and fish size on oxygen consumption (OC) in the black porgy Acanthopagrus schlegeli, a euryhaline marine teleost, were studied using a closed recirculating seawater system with a respiratory chamber. Fish reared in indoor recirculating seawater tanks were divided into two groups: small (15.7-55.8 g, mean 38.1$\pm$15.9 g) and large (108.7-238.8 g, mean 181.8$\pm$54.9 g) fish. The OC of the fish showed a clear diel rhythm, with higher values in the daytime and lower values at night, in accordance with light (09:00-20:59 h) and dark (21:00-08:59 h) cycles. The OC of the fish increased linearly with the water temperature. The OC was the highest at 10:00 h, one hour after the onset of daylight and was the lowest at 03:00 h, six hours after dusk. The average OC at $20^{\circ}C$ during the light period was as high as 219.8 mg $O_2$/kg/h in the small fish and 156.3 mg $O_2$/kg/h in the large fish, while during the dark period it was as low as 130.5 and 110.4 mg $O_2$/kg/h, respectively. The OC during the dark period, which showed limited variation, could be regarded as the resting OC, and was 107.6, 130.5, and 219.8 mg $O_2$/kg/h at 15, 20, and $25^{\circ}C$, respectively, in small fish, and 52.3, 110.4, and 171.0 mg $O_2$/kg/h in large fish. As the body weight of black porgy increased, the OC decreased exponentially and the relationship was expressed as OC=1,222.8$BW^{-0.567}$, OC=1,113.2$BW^{-0.448}$, and OC=1,495.3$BW^{-0.468}$ at 15, 20, and $25^{\circ}C$, respectively. At a fish density of 14.5 g/L at $20^{\circ}C$, black porgy had the highest OC per breath compared to fish at the same density at 15 or $25^{\circ}C$. This suggests that the black porgy responds to the stocking density (15 kg/$m^3$) and water temperature ($20^{\circ}C$) conditions commonly observed in intensive aquaculture with the deepest breath and the highest metabolic activity.

차세대 ULSI interconnection을 위한 CVD 저유전율 박막 개발

  • 김윤해;김형준
    • 세라미스트
    • /
    • 제4권1호
    • /
    • pp.5-13
    • /
    • 2001
  • 차세대 ULSI 소자의 다층금속배선을 위한 저유전 물질중에서, 기존의 절연막인 TEOS-$SiO_2$ 증착 장비 및 공정을 최대한 이용할 수 있으며, 물성 또한 TEOS oxide와 유사하다는 점에서 적용 시점을 앞당길 수 있는 SiOF 박막과 SiOC 박막의 특성에 대해 고찰해 보았다. 1세대 저유전 물질이라 할 수 있는 SiOF는 후속공정에도 안정적인 상태의 박막을 얻기 위해서는 3.0이하의 유전상수를 얻는 것이 불가능한 반면, SiOC는 3.0 이하의 유전상수를 가지는 안정적인 박막을 얻을 수 있다. SiOC 물질은 저밀도의 단일물질로서, 물질 내부에 후속공정에 영향을 미칠만한 기공을 포함하지 않기 때문에 후속 CMP 공정에 적합하였으며, $450^{\circ}C$이하의 열 공정에서도 응력변화 및 박막성분 탈착이 거의 일어나지 않는 점 또한 SiOC 박막의 우수한 후속공정 적합성을 보여주는 결과였다. 이러한 결과를 종합하여 볼 때, 현재 사용되고 있는 1세대 저유전 물질인 SiOF 박막을 대체할 차세대 저유전 물질로 SiOC 물질이 유망하며, 이는 3.0 이하의 유전상수를 요구하는 Gb DRAM 소자나 보다 빠른 동작속도가 생명인 논리회로(logic circuit) 소자에 적용될 경우 큰 소자특성 개선이 기대된다.

  • PDF

Brining Property and Antimutagenic Effects of Organic Chinese Cabbage Kimchi

  • Park, Woon-Young;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • 제3권3호
    • /
    • pp.287-291
    • /
    • 1998
  • Brining property and antimutagenic effects of organically cultivaged Chinese cabbage kimchi (OC kimchi) and common Chinese cabbage imchi (CC kimchi) were studied. The salt absorption rate of leaves was faster than that of stems of the Chinese cabbages. Due to the large portion of leaf in organic Chinese cabbage, organic Chinese cabbage(OC) was much faster in terms of salt absorption rate than common Chinese cabbage(CC). The antimutagenic effects of methanol extracts of CC kimchi and OC kimchi were studied against aflatoxin B1(AFB1) using Ames test on Samonella typhimurium TA 100 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) using SOS chromotest. Methanol extract from 6 -day fermented OC kimchi at 15 $^{\circ}C$ showed 80% inhibition rate against the indirect mutage, aflatoxin B1 induced mutagenicit where as that from 6-day fermented CC kimchi at 15 $^{\circ}C$ showed 54% inhibition rate in the Ames test. Methanol extracts from 6-day fermented CC kimchi and OC kimchi showed 27 % and 58 % inhibition rate against direct mutagen , N-methyl-N'-nitro-N-nitrosoguanidine induced mutagenicity, respectively in SOS chormotest, thus OC kimchi exhibited higher antimutagenic activity than kimchi.

  • PDF

Recreational Physical Activity and Risk of Ovarian Cancer: a Meta-analysis

  • Zhou, Li-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5161-5166
    • /
    • 2014
  • Our aim was to access the association between recreational physical activity (RPA) and risk of ovarian cancer (OC). The studies were retrieved from the PubMed and Embase databases up to February 20th, 2014. Risk ratios (OR) and 95% confidence intervals (CI) were used to estimate effect sizes. Random-effects or fixed-effects models were used to pool the data. The trim and fill method was applied for sensitivity analysis. Begg's rank correlation test and Egger's regression asymmetry test were employed to assess the publication bias. A total of 6 studies (435398 participants including 2983 OC patients) were included in this meta-analysis. The overall estimate indicated that there was weakly inverse association between RPA and OC risk (RR=0.90, 95%CI: 0.72-1.12, p=0.335). Meanwhile, for prospective cohort studies, a result consistent with the overall estimate was obtained (RR=1.12, 95% CI: 0.88-1.42, p=0.356). However, for case control studies, the pooled estimate of RR was 0.76 (95%CI: 0.64-0.90, p=0.002), indicating a clear significant association between RPA and OC risk. In addition, the sensitivity analysis indicated a significant link between RPA and risk of OC after removing Lahmann's study (RR=0.80, 95% CI: 0.68-0.93, p=0.004). No significant publication bias was found (Begg's test: p=1.00; Egger's test: p=0.817). In conclusion, our meta-analysis indicated a weakly inverse relationship between RPA and the occurrence of OC.

Instrumentation of a Thermal-Optical Carbon Analyzer and Its Sensitivity in Organic and Elemental Carbon Determination to Analysis Protocols

  • Lim, Ho-Jin;Sung, Su-Hwan;Yi, Sung-Sin;Park, Jun-Hyun
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2012
  • A thermal-optical transmittance carbon analyzer has been developed to determine particulate organic (OC) and elemental (EC) carbon. Several analysis factors affecting the sensitivity of OC and EC determination were investigated for the carbon analyzer. Although total carbon (TC) is usually consistent in the determination, OC and EC split is sensitive to adopted analysis protocol. In this study the maximum temperature in oxygen-free He in the analysis was examined as a main cause of the uncertainty. Prior to the sensitivity analysis consistency in OC-EC determination of the carbon analyzer and the uniformity of carbonaceous aerosol loading on a sampled filter were checked to be in acceptable range. EC/TC ratios were slightly decreased with increasing the maximum temperature between $550-800^{\circ}C$. For the increase of maximum temperature from $500^{\circ}C$ to $800^{\circ}C$, the EC/TC ratio was lowered by 4.65-5.61% for TC loading of 13-44 ${\mu}g/cm^2$ with more decrease at higher loading. OC and EC determination was not influenced by trace amount of oxygen in pure He (>99.999%), which is typically used in OC and EC analysis. The facing of sample loaded surface to incident laser beam showed negligible influence in the OC-EC split, but it caused elevated PC fraction in OC for forward facing relative to backward facing.