• Title/Summary/Keyword: OBD protocol

Search Result 25, Processing Time 0.025 seconds

A Development of Android-based Smart Car Black Box Application Using Inside Car Information (자동차 내부정보를 다루는 안드로이드 기반 스마트 자동차 블랙박스 어플리케이션 개발)

  • Kim, Min-Young;Nam, Jae-Hyun;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1167-1172
    • /
    • 2012
  • South Korea's black box made of the hardware-based has problem that is modify program update and Physical errors. This problem makes the driver uncomfortable. And it is save to built-in memory, after collect with GPS and Video Data. However, These data are the information used for accident analysis lacks credibility. In this paper, to solve this problem, android Black Box application has been developed. This application is collecting OBD protocol(information inside the car) and Existing data.

Implementation and Design of motorcar consumption management iOS based software with OBD-II and WiFi network (OBD-II WiFi를 이용한 iOS 기반의 자동차 소모품관리 소프트웨어 설계 및 구현)

  • Jeong, Da-Woon;Nam, Jae-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.475-478
    • /
    • 2011
  • driver for safety always check the status of their vehicle, and it is essential to understand. But if you want to know the status of the driver of the vehicle in specialist referral time and money because it costs the operator shall be paid. Today's rapidly changing IT technology with the development of the various features of your phone to check the status of the vehicle was able to do. However, the car's existing phone system, car diagnostic expertise must be learned because it will reveal the status of the vehicle do not have the expertise to not highlight the need for diagnostic. To reflect these points in smartphone users to easily use their own vehicles at a time to determine the status of a system that is required. In this paper, OBD-II protocol conversion WiFi OBD-II connector, retrieving information from the driver of the vehicle replacement cycle of consumables required vehicle inspection, vehicle problems in real-time diagnostic information to the user ease of use shows the IOS implementation in the automotive supply was implemented based on the smartphone.

  • PDF

A implement of blackbox with in vehicle network data and the external sensor data (차량내부정보와 외부센서를 사용한 블랙박스 구현)

  • Kim, Jang-Ju;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2471-2477
    • /
    • 2010
  • lately, vehicle blackbox increasing importance and usability Is needed accuracy and variety of information. because, blackbox help to analyze the exact cause of the accident and use as objective evidence in vehicle-related crime. In the paper, to overcome the limitations of the existing black box, use various sensors and vehicle information blackbox store current state of the vehicle with OBD-II protocol using vehicle state information and store exact current location and direction information of the vehicle with Gyro sensor and GPS and use global time of GPS for synchronization of information. In addition, blackbox back the information up with wifi. because, when blackbox damaged, dirvers were able to verify the information.

Implementation of ECO Driving Assistance System based on IoT (IoT기반 ECO 운전보조 시스템 구현)

  • Song, Hyun-Hwa;Choi, Jin-ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Recently, fine dust has been known to cause cardiovascular diseases here, raising interest in ways to reduce emissions by efficiently using fuel from cars that cause air pollution. Accordingly, a driving assistance system was developed to save fuel by eco-driving and improve the driver's bad driving habits. The system was developed using raspberry pi, arduino and Android. Using RPM, speed, fuel injection information obtained from OBD-II, and gyro-sensor values, Fuel-Cut is induced to create an optimal inertial driving environment. It also provides various information system such as weather, driving environment, and preventing drowsy driving through GUI and voice recognition functions. It is possible to check driving records and vehicle fault information using Android application and has low overhead for message transmission using MQTT protocol optimized for IoT environment.

A Study on Vehicle Diagnostic System Linked with Navigation (내비게이션과 연동한 자동차 진단 시스템 연구)

  • Kim, Mi-Jin;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.105-108
    • /
    • 2010
  • The vehicle navigation system is a representative driver supporting system that available to present searching and guiding path functions, have been increased for usability. Under competition situation because of following the spreaded navigation market, to meet customer's needs about new given services, there are need differentiated services increasing dramatically. Also now, dash board indicates various vehicle's status and driver can aware of that. However it is not easy to know where is abnormal essentially and there are no devices to give warning to driver. Therefore, It is difficult to preserve accidents because it can't deal with various abnormal functions immediately on driving. In this paper, we proposed vehicle diagnosis program within navigation that is available to manage and to make a diagnosis of vehicle. And this program conform OBD-II standard, so it can transmit diagnosis data from ECU to navigation system using Bluetooth wireless communication protocol. Thus this program give enhanced services to customer as well as multimedia and geometry information services.

  • PDF

A Study on the Implementation of the On-Board Diagnostic Function on the Smart Phone and the Compatibility Test for Short-Range Wireless Communications (스마트폰 연동 차량의 온보드 고장진단 기능 구현과 근거리 무선통신 호환성 시험에 관한 연구)

  • Koo, Je-Gil;Yang, Seong-Ryul;Song, Jong-Wook;Lee, Choong-Hyuk;Yang, Jae-Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.285-292
    • /
    • 2016
  • By adding short-range wireless communication function such as Bluetooth and Wi-Fi to the last vehicle in conjunction with a smart phone, a modern automobile is becoming entertainment screen to determine a variety of information such as car location information, diagnosis information, etc. through the ECU vehicle electronic control unit. In this study, by utilizing short-range communications capability of the on-board diagnostic devices and smart phones in association with the on-board diagnostics, compatibility tests among a number of smart phone models, Bluetooth and NFC(Near Field Communication) were carried out and those results were analyzed. Furthermore, composition of on-board diagnostic device having Bluetooth and NFC interface function and the fault diagnosis function were implemented, and fault diagnosis debugging program was developed. In addition, fault diagnosis data of the vehicle via the OBD-II interface was extracted. Finally, the on-board diagnostics CAN Protocol implementation has been proposed, and the results of work was analyzed.

Ethernet Port를 이용한 차량 진단 모니터링 시스템의 설계

  • Shin, Ju-Young;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.98-101
    • /
    • 2009
  • Recently, there is use of the vehicle network for vehicle diagnostic method and Increased use of the vehicle protocol such as (CAN(Controller Area Network), MOST, LIN, FlexRay), Distributed control and data about the vehicle are being sought methods for real-time observation and monitoring and trend tends to have gone into this. In this case of automotive diagnostic module in today, there is Primarily to use DLC(Data Link Connector)Connector called self-check terminal. Generally, vehicle Diagnoses to use DLC Connector such as OBD2(On Board Diagnostics) Through Diagnostic Module(scanner). But there limit diagnostic as engine and powertrain part, and not consider user's perspective In this paper, By designing Vehicle diagnostic monitoring system using Ethernet Port, transmit and Receives CAN protocol vehicle data, and implement Easily monitoring system that provide and Diagnoses to provide vehicle's state and information to use PC.

  • PDF

Design and Implementation of ontology based context-awareness platform using driver intent information (운전자 의도정보를 이용한 온톨로지 기반 지능형자동차 상황인식 플랫폼 설계 및 구현)

  • Ko, Jae-Jin;Choi, Ki-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In this paper, we devise a new ontology-based context-aware system to recognize the smart car information, in which driver's intent is utilized by information of car, driver, environment as well as driving state, driver state. So proposed system can handle dynamically risk changes by adding real-time situational awareness information. We utilize the camera image recognition technology for context-aware intelligent vehicle driving information, and implement information acquisition scheme OBD-II protocol to acquire vehicle's information. Experiments confirm that the proposed advanced driver safety assist system outperforms the conventional system, which only utilizes the information of vehicle, driver, and environmental information, to support the service of a high-speed driving, lane-departure service and emergency braking situation awareness.

Implementation of Self Diagnostics Low-power Embedded Linux System using Telematics (텔레매틱스을 통한 자가진단 저전력 임베디드 리눅스 시스템 구현)

  • Ju, Jae-han
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.300-305
    • /
    • 2017
  • It is necessary to establish a system suitable for the driving vehicle so that it can effectively search for and modify various data anywhere and anytime by effectively linking communication with the computer system in the running vehicle and to control the equipment properly for smooth operation on a limited platform do. Also, vehicle CAN communication is used to extract system engine information, and data is transmitted using ZigBee for this information transmission. Therefore, OBD-II protocol, which is provided by the vehicle itself, is used for vehicle CAN to obtain vehicle status information and exhaust gas using various sensor information of the vehicle and O2 sensor value, and transmits it to the ZigBee main control system. In this study, we implemented a system that can reduce the battery load damage to the maximum by reducing the power consumption to the maximum, and to monitor the internal state of the vehicle through ZigBee communication with the embedded system for low power vehicles.

A Study on IoT Monitering Technology of Power Converter for E-Mobility (E-Mobility용 전력변환기의 IoT 모니터링 기술에 대한 연구)

  • Lee, In-Seok;Lee, Ju;Kang, Ja-Yoon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.39-44
    • /
    • 2018
  • In this paper, we propose a monitoring method of smartphone to integrate IoT technology to monitor the state of the vehicle for fault diagnosis of E-Mobility power converter. In China, EV regulations are being implemented to promote technological development and market changes in electric vehicles. To meet this trend, E-Mobility should study suitable monitoring technology. The OBD-II method used in existing automobiles is a wired / wireless communication method. In order to apply it to E-Mobility, additional interface and communication link are required. In this paper, we propose a technology to monitor the status information of power converter for E-Mobility by combining existing technology with IoT. This technology simplifies the existing network protocol and hardware interface, and confirms that the E-Mobility power converter and smartphone can be interworked for easy user monitoring. And we have done research to make high value product design from the aspect of function.