• Title/Summary/Keyword: O2/Ar ratio

Search Result 400, Processing Time 0.033 seconds

Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder (합성 불산화 이트륨 분말을 이용한 DLP 3D 프린팅용 광경화성 슬러리 제조)

  • Kim, Eunsung;Han, Kyusung;Choi, Junghoon;Kim, Jinho;Kim, Ungsoo
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.532-538
    • /
    • 2021
  • In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 ℃. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.

Improvement of the Characteristics of PZT Thin Films deposited on LTCC Substrates (LTCC 기판상에 증착한 PZT 박막의 특성 향상에 관한 연구)

  • Hwang, Hyun-Suk;Kang, Hyun-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.245-248
    • /
    • 2012
  • In this paper, the optimized growing conditions of PZT thin films on low temperature co-fired ceramics (LTCC) substrates are studied. The LTCC technology is an emerging one in the fields of mesoscale (from 10 um to several hundred um) sensor and actuator against silicon based technology due to low cost, high yield, easy manufacturing of 3 dimensional structure, etc. The LTCC substrates with thickness of 400 um are fabricated by laminating 100 um green sheets using commercial power (NEG, MLS 22C). The Pt/Ti bottom electrodes are deposited on the LTCC substrates, then the growing conditions of PZT thin films using rf magnetron sputtering method are studied. The growing conditions are tested under various rf power and gas ratio of oxygen to argon. And the crystallization and ingredient of PZT films are analyzed by X-ray diffraction method (XRD) and energy dispersive spectroscopy (EDS). The optimized growing conditions of PZT thin films are rf power of 125W, Ar/O2 gas ratio of 15:5.

The Phenomenon of the Slag Foaming and the Result of using Various Slag Deforming Agents in the Steelmaking Converter (제강(製鋼) 전로(轉爐) 정연시(精鍊時) 슬래그 폼(Slag Foam)발생(發生) 현상(現像) 및 진정제(鎭靜劑) 종류(種類)에 따른 사용효과(使用效果))

  • Chun, Sang-Ho;Song, Choong-Ok;Ban, Bong-Chan
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.18-23
    • /
    • 2006
  • Foaming of slag is a thermodynamically unstable phenomenon and has significant effects in iron and steelmaking processes. For better recycling method of pulp sludge, the application as an defoaming agent during steelmaking process was adopted and tested. The forming machine has been modified in order to produce the briquettes, which are made of pulp sludge and slag with different weight ratio. Influencing factors on the foaming phenomena have been studied and tested for better understanding of foaming phenomena. Experiments were carried out with $CaO-FeO-SiO_2$ based slags with Ar gas injection and addition of coke particles. The slag basicity and (%FeO) contents adapted as major factors to treasure foaming tendency of the slag system. It was found that foam index (${\Sigma}$) gradually decreased as both the basicity and the (FeO) content increase. Four kinds of antifoaming agent such as aluminium dross, cokes, rice bran and pulp sludge with steelmaking slag have been tested in actual process. Aluminium dross was the most effective, and pulp sludge with steelmaking slag also showed the desired results.

Study of Plasma Treatments to Increase Work Function of Multilayer Graphene Film

  • Maeng, Min-Jae;Kim, Ji-Hoon;Kwon, Dae-Gyeon;Hong, Jong-Am;Park, Yongsup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.198.2-198.2
    • /
    • 2014
  • We investigated change of the electronic structure, chemical states and elements ratio in graphene film by using photoelectron spectroscopy (PES). The graphene electrode has attracted considerable interest due to its possible applications in flexible organic light emitting diodes (F-OLEDs). However, to use the graphene for OLEDs, sufficient increase of work function is required, that is related with hole injection barrier. Plasma treatment is one of the most widely used method in OLEDs to increase the work function of the anode such as indium tin oxide (ITO). In this work, we used the plasma treatment, which is generated by various gas types such as O2, and Ar to increase the work function of the graphene film. From these results, we discuss the relation among the change of work function, plasma power, plasma treatment time and gas types.

  • PDF

Experimental Study on N2 Impurity Effect in the Pressure Drop During CO2 Mixture Transportation (CO2 파이프라인 수송에서의 N2 불순물이 압력강하에 미치는 영향에 대한 실험적 연구)

  • Cho, Meang-Ik;Huh, Cheol;Jung, Jung-Yeul;Baek, Jong-Hwa;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.67-75
    • /
    • 2012
  • Carbon-dioxide capture and storage (CCS) process is consisted by capturing carbon-dioxide from large point source such as power plant and steel works, transporting and sequestrating captured $CO_2$ in a stable geological structure. During CCS process, it is inevitable of introducing impurities from combustion, capture and purification process into $CO_2$ stream. Impurities such as $SO_2$, $H_2O$, CO, $N_2$, Ar, $O_2$, $H_2$, can influence on process efficiency, capital expenditure, operation expense of CCS process. In this study, experimental apparatus is built to simulate the behavior of $CO_2$ transport under various impurity composition and process pressure condition. With this apparatus, $N_2$ impurity effect on $CO_2$ mixture transportation was experimentally evaluated. The result showed that as $N_2$ ratio increased pressure drop per mass flow and specific volume of $CO_2-N_2$ mixture also increased. In 120 and 100 bar condition the mixture was in single phase supercritical condition, and as $N_2$ ratio increased gradient of specific volume change and pressure drop per mass flow did not change largely compared to low pressure condition. In 70 bar condition the mixture phase changed from single phase liquid to single phase vapor through liquid-vapor two phase region, and it showed that the gradient of specific volume change and pressure drop per mass flow varied in each phase.

Transfer-free growth of graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Song, Inseol;Jang, Seong Woo;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.109.2-109.2
    • /
    • 2015
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties such as high carrier mobility, chemical stability, and optical transparency. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which need transfer to desired substrates for various applications. However, the transfer steps inevitably induce defects, impurities, wrinkles, and cracks of graphene. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer, which does not require separately deposited catalytic nickel and carbon source layers. The 100 nm NiC layer was deposited on the top of $SiO_2/Si$ substrates by nickel and carbon co-deposition. When the sample was annealed at $1000^{\circ}C$, the carbon atoms diffused through the NiC layer and deposited on both sides of the layer to form graphene upon cooling. The remained NiC layer was removed by using nickel etchant, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. Raman spectroscopy was carried out to confirm the quality of resulted graphene layer. Raman spectra revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Furthermore, the Raman analysis results also demonstrated that gas flow ratio (Ar : $CH_4$) during the NiC deposition and annealing temperature significantly influence not only the number of graphene layers but also structural defects. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method (임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정)

  • Shin, Gi Won;Lee, Hwan Hee;Kwon, Hee Tae;Kim, Woo Jae;Seo, Young Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF