• Title/Summary/Keyword: O2/Ar ratio

Search Result 400, Processing Time 0.028 seconds

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF

Electrical Properties and Reliability of the Photo-conductive CdS Thin Films for Flexible Opto-electronic Device Applications (유연성 광전도 CdS 박막의 증착조건에 따른 전기적 특성 및 신뢰성 평가 연구)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Park, Kyoung-Woo;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1023-1027
    • /
    • 2009
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2/(Ar+H_2)$ flow ratios on polyethersulfon (PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7\;{\times}\;10^5\;{\Omega}/square$, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

Electrical Properties and Reliability of CdS Thin Film Deposited by R.F. Sputtering (유연성 기판위에 스퍼터링 방법으로 증착한 CdS 박막의 전기적 특성 및 신뢰성 평가)

  • Hur, Sung-Gi;Hwang, Mi-Na;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.26-26
    • /
    • 2010
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2(Ar+H_2)$ flow ratios on polyethersulfon(PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7{\times}10^5{\Omega}$/square, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

  • PDF

A Study on the Reduction of Electric Arc Furnace Dust with Carbon (탄소에 의한 전기로 분진의 환원반응에 관한 연구)

  • 진영주;김영진;박병구;이광학;김영홍;이재운
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • EAF dust generated from electric arc steelmaking process is classified as "hazardous" materials by tbe environmental regulation because of the existence of water leachable heavy metals such as Fe, Zn, Pb, and Cd. However, Fe and Zn among t the elements in the dust can be recovered to high valuable materials by applying a proper process. Therefore, in order to study t the possibility of recovery of iron from EAF dust, the effect oE carbon content and basicity, of synthesized EAF dust on the reduction rate of iron oxide was studied. Experimental results are as follows: TIle softening and melting temperature of the slag w was illcreased with increasing carbon addition amount [or carbon reduction eqUIvalent. At the carbon addition amount of 100% for carbon reduction equivalent and basicity of 1.7, reduction rate of $Fe_2O$ in the slag was the highest. The reaction order fur reduction of $Fe_2O$ by carbon was nearly first order.

  • PDF

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Sintering Effects on Fe/Mo Ordering and Magnetoresistance in Double Perovskite Sr2FeMoO6

  • Kim, J;Park, B.J;Lee, B.W
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.9-12
    • /
    • 2004
  • We have investigated sintering effects on Fe/Mo ordering and magnetoresistance (MR) in double perovskite-reflection lines due to $Sr_2FeMoO_6$ (SFMO). Polycrystalline samples have been prepared by the conventional solid-state reaction by sintering in a stream of 5% $H_2/Ar$ gas. All samples are single phase and exhibit a series of superstructurecation ordering at Fe and Mo sites. As sintering temperature increases from 900 to $1300^{\circ}C$, the degree of Fe/Mo ordering increases from 82 to 92%, magnetization (15 K, 7 kOe) increases from 1.6 to 2.7 ${\mu}_B/f.u.,$ and Curie temperature increases at a rate of 4.3 K/% with the increase of Fe/Mo ordering ratio. The magnitude of MR measured at 5 K is 19% for sample prepared at $1000^{\circ}C$ with magnetic fields of 7 kOe. The observed MR is proportional to the square of magnetization indicating that the MR feature in SFMO is explained by the spin-polarized tunneling at grain boundaries.

Crystallization and Electrical Properties of SBM Thin Films by IBSD Process (IBSD법에 의한 SBN60 강유전체 박막의 배향 및 전기적 특성)

  • Jeong, Seong-Won;Jang, Jae-Hoon;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.869-873
    • /
    • 2004
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient, piezoelectric, and a photo refractive properties. In this study, SBN60(x=0.6) thin film was manufactured by ion beam sputtering technique. Using the prepared SBN60 target in $Ar/O_2$ atmosphere as-deposited SBN60 thin film on Pt(100)/$TiO_2/SiO_2/Si$ substrate crystallization and orientation behavior as well as electric properties of SBN60 thin film were examined. SBN60 deposition up to $3000{\AA}$ in thickness, SBN60 thin film was heat-treated at $650^{\circ}C{\sim}800^{\circ}C$. The orientation was shown primarily along (001) plane from XRD pattern where working pressure was $4.3{\times}10^{-4}$ torr. The deposited layer was uniform, preferred orientatin and crystallization behavior resulted in the change of $O_2$ ratio was observed. In electric propertie of Pt/SBN60/Pt thin film capacitor remnant polarization (2Pr) value was $10{\mu}C/cm^2$, the coercive filed (Ec) 50 kV/cm, and the dielectric constant 615, respectively.

  • PDF

Preparation and Electrical Properties of BiFeO3 Films by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 BiFeO3 박막의 제조 및 전기적 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.253-258
    • /
    • 2009
  • Mn-substituted $BiFeO_3$(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/$O_2$ mixture of various deposition pressures at room temperature. The effects of the deposition pressure and annealing temperature on the crystallization and electrical properties of BFO films were investigated. X-ray diffraction patterns revealed that BFO films were crystallized for films annealed above $500^{\circ}C$. BFO films annealed at $550^{\circ}C$ for 5 min in $N_2$ atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Bi ratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grain size and surface roughness of films increased with an increase in the deposition pressure. The dielectric constant of BFO films prepared at various conditions shows $127{\sim}187$ at 1 kHz. The leakage current density of BFO films annealed at $500^{\circ}C$ was approximately two orders of magnitude lower than that of $550^{\circ}C$. The leakage current density of the BFO films deposited at $10{\sim}30\;m$ Torr was about $5{\times}10^{-6}{\sim}3{\times}10^{-2}A/cm^2$ at 100 kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealed at $500^{\circ}C$ exhibited remnant polarization(2Pr) of $26.4{\mu}C/cm^2$ at 470 kV/cm.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Grating fabrication for DFB laser diode using holographic interferometer system (DFB 레이저 다이오드를 위한 홀로그래픽 시스템을 이용한 회절격자 제작)

  • 강명구;오환술
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.108-113
    • /
    • 1996
  • Periodic gratings for 1.55$\mu$m distributed feedback laser diode (DFB LD) have been fabricated by a holographic interference exposure system using an etalon stabilized Ar ion laser. We obtain a good development condition at developer concentration of 65% and obtain etching rate of 1000$\AA$/min at 20.deg. C by the mixed solution HBr:HNO$_{3}$:H$_{2}$O(1:1:10 in volume ratio). We obtain good first order grating with period of 2400${\AA}[\pm}2{\AA}$ at etching time of 45 sec from grating period and diffraction efficiency measurement, and SEM observation of grating fabricated on InP substrate.

  • PDF