• Title/Summary/Keyword: O-plasma treatment

Search Result 608, Processing Time 0.029 seconds

Cold Plasma Treatment Effects on the Physicochemical and Biodegradable Properties of a Corn Biomass-containing Polyester Film (옥수수 바이오매스를 함유한 폴리에스터 필름의 물리 화학적 특성과 생분해 특성에 대한 콜드 플라즈마 처리의 영향)

  • Song, Ah Young;Oh, Yoon Ah;Oh, Se Jun;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.224-232
    • /
    • 2015
  • The effects of cold plasma (CP) treatments on the physicochemical and biodegradable properties of a corn biomass-containing polyester (CBPE) film were studied. The CBPE film was treated with CP generated by $N_2$, $O_2$, He, Ar, or dry air at 400-900 W and 667 Pa for 10-40 min. The glass transition temperature of the CBPE film ($-30.2--28.6^{\circ}C$) was not affected by the CP treatment, while the elastic modulus and water vapor permeability decreased (p<0.05). The ink printability was improved by the treatment and the improved printability was maintained during storage for 56 days at room temperature. Roughness of the film increased after treatments and the level of roughness appeared to increase during storage. Heat and microbial biodegradability of the CBPE film was improved by the air-CP treatment (p<0.05). These results have demonstrated the potential of applying CP treatments to improve the flexibility, printability, and biodegradability of CBPE films.

The Heat Treatment Characterization of Plasma Sprayed Alumina Coatings (플라즈마 용사법에 의한 $Al_2$O$_3$ 피복층의 열처리효과에 관한 연구)

  • 오익현;김한산;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.134-142
    • /
    • 1994
  • $Al_2O_3$coatings on mild steel substrate by plasma spray process were produced to evaluate microstructural characterization and mechanical properties. As-coated $Al_2O_3$coating samplessd were subjected to two heat treat-ment conditions : ⅰ) annealing under vacuum circumstance, ⅱ) hot press treated condition. The two heat treat-ed coatings were investigated in terms of microhardness, adhesion strength, wear resistance, porosity forma-tion, and microstructures. In the case of the coatings which were subject to preparation step ⅰ, the porosity in the coating was decreased with the increase of temperature ($700^{\circ}C$-$1100^{\circ}C$), and the wear resistance, microhardnesss and adhesion strength were increased with the increase of temperature. On the other hand, in the case of the coatings which were subject to preparation step ⅱ, wear resistance and adhesion strength were improved with the increase of temperature and pressure. Experimental measurements of coatings which were produced by both preparation conditions were enhanced compare to those of as-coated coatings.

  • PDF

Influence of gate insulator treatment on Zinc Oxide thin film transistors.

  • Kim, Gyeong-Taek;Park, Jong-Wan;Mun, Yeon-Geon;Kim, Ung-Seon;Sin, Sae-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.54.2-54.2
    • /
    • 2010
  • 최근까지는 주로 비정질 실리콘이 디스플레이의 채널층으로 상용화 되어왔다. 비정질 실리콘 기반의 박막 트랜지스터는 제작의 경제성 및 균일성을 가지고 있어서 널리 상용화되고 있다. 하지만 비정질 실리콘의 구조적인 문제인 낮은 전자 이동도(< $1\;cm^2/Vs$)로 인하여 디스플레이의 대면적화에 부적합하며, 광학적으로 불투명한 특성을 갖기 때문에 차세대 디스플레이의 응용에 불리한 점이 있다. 이런 문제점의 대안으로 현재 국내외 여러 연구 그룹에서 산화물 기반의 반도체를 박막 트랜지스터의 채널층으로 사용하려는 연구가 진행중이다. 산화물 기반의 반도체는 밴드갭이 넓어서 광학적으로 투명하고, 상온에서 증착이 가능하며, 비정질 실리콘에 비해 월등히 우수한 이동도를 가짐으로 디스플레이의 대면적화에 유리하다. 특히 Zinc Oxide의 경우, band gap이 3.4eV로써, transparent conductors, varistors, surface acoustic waves, gas sensors, piezoelectric transducers 그리고 UV detectors 등의 많은 응용에 쓰이고 있다. 또한, a-Si TFTs에 비해 ZnO-based TFTs의 경우 우수한 소자 성능과 신뢰성을 나타내며, 대면적 제조시 우수한 균일성 및 낮은 생산비용이 장점이다. 그러나 ZnO-baesd TFTs의 경우 일정한 bias 아래에서 threshold voltage가 이동하는 문제점이 displays의 소자로 적용하는데 매우 중요하고 문제점으로 여겨진다. 특히 gate insulator와 channel layer사이의 interface에서의 defect에 의한 charge trapping이 이러한 문제점들을 야기한다고 보고되어진다. 본 연구에서는 Zinc Oxide 기반의 박막 트랜지스터를 DC magnetron sputtering을 이용하여 상온에서 제작을 하였다. 또한, $Si_3N_4$ 기판 위에 electron cyclotron resonance (ECR) $O_2$ plasma 처리와 plasma-enhanced chemical vapor deposition (PECVD)를 통하여 $SiO_2$ 를 10nm 증착을 하여 interface의 개선을 시도하였다. 그리고 TFTs 소자의 출력 특성 및 전이 특성을 평가를 하였고, 소자의 field effect mobility의 값이 향상을 하였다. 또한 Temperature, Bias Temperature stability의 조건에서 안정성을 평가를 하였다. 이러한 interface treatment는 안정성의 향상을 시킴으로써 대면적 디스플레의 적용에 비정질 실리콘을 대체할 유력한 물질이라고 생각된다.

  • PDF

Evaluation of a Dielectric Barrier Discharge Plasma System for Inactivating Pathogens on Cheese Slices

  • Lee, Hyun-Jung;Jung, Samooel;Jung, Hee-Soo;Park, Sang-Hoo;Choe, Won-Ho;Ham, Jun-Sang;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.191-198
    • /
    • 2012
  • The objective of this study was to evaluate the potential use of a dielectric barrier discharge (DBD) plasma system to improve microbial safety of sliced cheese. The atmospheric pressure plasma (APP) effect on visual appearance and a sensory evaluation were also carried out. The number of Escherichia coli inoculated on cheese slices decreased by 0.09, 0.47, 1.16 and 1.47 log cycles with helium (4 liters/min [lpm]) and 0.05, 0.87, 1.89 and 1.98 log cycles with He/$O_2$ mixture (4 lpm/15 standard cubic centimeters per minute), after being treated with plasma for 1, 5, 10, and 15 min, respectively. Significant reductions were also observed in Staphylococcus aureus inoculated onto cheese slices ranging from 0.05 to 0.45 log cycles with He and from 0.08 to 0.91 log cycles with He/$O_2$-treated samples, respectively. Adding oxygen resulted in a significant increase in inactivation of both pathogens. No visible change in the plasma-treated cheese slices was observed even though the instrumental analysis showed a significant decrease in the $L^*$-value and an increase in the $b^*$-value. The cheese slices were damaged after 10 and 15 min of plasma treatment. In addition, significant reductions in sensory quality including flavor, odor, and acceptability of plasma-treated cheese slices were observed. The results indicate that the DBD plasma system has potential for use in sanitizing food products, although the effect was limited. Further development of the APP system is necessary for industrial use.

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge (대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성)

  • Lee, Su-Bin;Kim, Yoon-Kee;Kim, Jeong-Soon
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.543-549
    • /
    • 2006
  • Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

High quality $SiO_2$ gate Insulator with ${N_2}O$ plasma treatment and excimer laser annealing fabricated at $150^{\circ}C$ (${N_2}O$ 플라즈마 전처리와 엑시머 레이저 어닐링을 통한 $150^{\circ}C$ 공정의 실리콘 산화막 게이트 절연막의 막질 개선 효과)

  • Kim, Sun-Jae;Han, Sang-Myeon;Park, Joong-Hyun;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.71-72
    • /
    • 2006
  • 플라스틱 기판 위에 유도 결합 플라즈마 화학적 기상 증착장치 (Inductively Coupled Plasma Chemicai Vapor Deposition, ICP-CVD) 를 사용하여 실리콘 산화막 ($SiO_2$)을 증착하고, 엑시머레이저 어널링 (Excimer Laser Annealing, ELA) 과 $N_{2}O$ 플라즈마 전처리를 통해, 전기용량-전압(Capacitance-Voltage, C-V) 특성과 항복 전압장 (Breakdown Voltage Field) 과 같은 전기적 특성을 개선시켰다. 에너지 밀도 $250\;mJ/cm^2$ 의 엑시머 레이저 어닐링은 실리콘 산화막의 평탄 전압 (Flat Band Voltage) 을 0V에 가까이 이동시키고, 유효 산화 전하밀도 (Effective Oxide Charge Density)를 크게 감소시킨다. $N_{2}O$ 플라즈마 전처리를 통해 항복 전압장은 6MV/cm 에서 9 MV/cm 으로 향상된다. 엑시머 레이저 어닐링과 $N_{2}O$ 플라즈마 전처리를 통해 평탄 전압은 -9V 에서 -1.8V 로 향상되고, 유효 전하 밀도 (Effective Charge Density) 는 $400^{\circ}C$에서 TEOS 실리콘 산화막을 증착하는 경우의 유효 전하 밀도 수준까지 감소한다.

  • PDF

Electrical Properties of Green Emitting OLED (녹색 발광 OLED의 전기적 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Chol;Kim, Sang-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.301-302
    • /
    • 2009
  • The Green emitting OLED was fabricated with the structure of ITO(plasm treatment)/TPD($400\;{\AA}$)/$Alq_3(600\;{\AA})$/LiF($5\;{\AA}$)/Al($1200\;{\AA}$). Turn-on voltage of PMOLED was 7 V and luminance was 7,371 cd/$m^2$ at the RF power of 25W. O2 plasma treatment of ITO surface was result in lowering the operating voltage and improving luminance of green OLED.

  • PDF

The characteristic of surface treatment about magnesium alloy (마그네슘합금에서의 표면처리 특성 연구)

  • Yu, Jae-In;Kim, Ki-Hong;Choi, Soon-Don;Chang, Ho-Gyeong
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.21-24
    • /
    • 2010
  • Plasma electrolyte oxidation (PEO) surface treatment of magnesium alloy, an optical analysis method through reflection spectra were measured. As a result, the sample is formed on the membrane form of MgO or $Mg(OH)_2$ is in the form of oxide. The wavelength energy of surface treatment of magnesium alloy sample observed 0.23eV red shift. The measured reflectance spectra observed with the three different signals. This is due to $Mg(OH)_2$ oxide layer formed on porous hole.

  • PDF

The Effect of Surface Treatment on Creep Behaviors of Mg Alloy (마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향)

  • Kang, Dae-Min;An, Jung-O;Kang, Min-Cheol
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.