• Title/Summary/Keyword: O$_3$

Search Result 44,098, Processing Time 0.055 seconds

Electrical Properties as the ratio of ZnO/$Mn_3$$O_4$ of NTC Thermistor with $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO system for Inrush Current Limited (돌입전류 제한용 $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO계 NTC 써미스터에서 ZnO/$Mn_3$$O_4$비에 따른 전기적 특성)

  • 윤중락;김지균;권정렬;이현용;이석원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.472-477
    • /
    • 2000
  • Oxides of the form Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO present properties that make them useful as power NTC thermistor for current limited. Electrical properties of Mn$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO power NTC thermistor such as I-V characteristics tim constant activation energy and heat dissipation coefficient measured as a function of temperature and composition. In Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO system with the 5wt% addition of Co$_{3}$/O$_{4}$ it can be seen that resistivity and B-constant were increased as the ratio of ZnO/Mn$_{3}$/O$_{4}$ was increased. Heat dissipation constant, I-V characteristics and time constant showed similar behaviour compared with those of conventional thermistors. In particular resistance change ratio ($\Delta$R) the important factor for reliability varied within $\pm$5% indicating the compositions of these products could be available for power thermistor.

  • PDF

Effect of the Structure of MoO3/bismuth molybdate Binary Phase Catalysts on the Selective Oxidation of Propylene (MoO3/bismuth molybdate 혼합 2상 촉매의 구조에 따른 프로필렌 선택산화반응 특성)

  • Cha, T.B.;Choi, M.J.;Park, D.W.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-63
    • /
    • 1992
  • M/BM -series catalysts, $MoO_3$ supported on ${\alpha}-Bi_2Mo_3O_{12}$ were also prepared by impregnation method. BM/M-series catalysts, ${\alpha}-Bi_2Mo_3O_{12}$ supported on $MoO_3$ were also prepared by coprecipitation. Structure and catalytic properties of the two phase catalysts were studied by means of using nitrogen adsorption, X-ray diffraction, and scanning electron microscopy. The reaction test for the selective oxidation of propylene to acrolein over Bi-molybdate catalysts was studied using a fixed-bed reactor system. In M/BM-series catalysts, $MoO_3$ was dispersed on ${\alpha}-Bi_2Mo_3O_{12}$, and the crystal structure of ${\alpha}-Bi_2Mo_3O_{12}$ remains unchanged by the presence of excess $MoO_3$. However the surface morphology and bulk structure of BM/M-series catalysts were altered probably because the precipitated $Bi(OH)_3$ reacted with $MoO_3$ during the calcination to form ${\alpha}-Bi_2Mo_3O_{12}$ phase. The results of propylene oxidation on both series catalysts showed that the reaction took place over the surface of ${\alpha}-Bi_2Mo_3O_{12}$ particle and the role of excess $MoO_3$ was to supply oxygen to ${\alpha}-Bi_2Mo_3O_{12}$. These increasing effects on activity were also observed in the mechanical mixtures of ${\alpha}-Bi_2Mo_3O_{12}$ and $MoO_3$.

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ 유리의 결정화와 전기화학적 특성 변화)

  • Son, Muong-Mo;Lee, Heon-Soo;Gu, Hal-Bon;Kim, Yun-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.550-553
    • /
    • 2001
  • $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass containing glass former, $P_{2}O_{5}$ and $Bi_{2}O_{3}$ was prepard by melting the glass batch in pt. erucible followed by guenching on the copper plate. We found that $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass-ceramics obtained from the crystallization of glass showed signifieantly higher capacity and longer cycle life tham $LiV_{3}O_{8}$ made from powder synthesis. In this paper, we described crystallization process and $LiV_{3}O_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by $LiV_{3}O_{8}$ crystal growth in matrix

  • PDF

Effects of MgO content of Spinel on the Reaction of Spinel with CaO-Al$_2$O$_3$-SiO$_2$ Slag (CaO-Al$_2$O$_3$-SiO$_2$계 슬래그와 스피넬의 반응에 미치는 스피넬중의 MgO함유량의 영향)

  • 조문규;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.410-416
    • /
    • 1999
  • The reactivity of three kinds of spinels which CaO-Al2O3-SiO2 slag was investigated in terms of mineral phases and microstructures. New crystal products were not formed by reaction of 12CaO.7Al2O3 in the slag with spinels and free MgO components was preferenctially dissolved into slag for MgO-rich spinel and stoichiometric spinel. Meanwhile mineral phase was changed from 12CaO.7Al2O3 to CaO.Al2O3 to CaO.2Al2O3 finally to CaO.6Al2O3 having high melting point for Al2O3 -rich spinel. The Fe-oxide component of the slag was taken up by only stoichiometric spinel grains within the spinel clinker and the trapped amount of Fe-oxide was independent of MgO content of MgO in spinel clinker the more th resistance to slag corrosion but the less resistance to slag penetration.

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$유리의 결정화와 전기화학적 특성 변화)

  • 손명모;이헌수;구할본;김윤선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.550-553
    • /
    • 2001
  • Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ glass containing glass former, P$_2$O$_{5}$ and Bi$_2$O$_3$ was prepard by melting the glass batch in pt. erucible followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ g1ass-ceramics obtained from the crystallization of glass showed significantly higher capacity and longer cycle life tham LiV$_3$O$_{8}$ made from powder synthesis. In this paper, we described crystallization process and LiV$_3$O$_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by LiV$_3$O$_{8}$ crystal growth in matrix.rowth in matrix.

  • PDF

Phase Transformation of 2 Components(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) and 3 Components(MgO-$ZrO_2-Al_2O_3)$ Zirconia by X-ray Diffraction and Raman Spectroscopy (X-선회절과 Raman 분광분석을 이용한 2성분계(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) 및 3성분계(MgO-$ZrO_2-Al_2O_3)$ Zirconia의 상전이연구)

  • 은희태;황진명
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.145-156
    • /
    • 1997
  • ZrO2 phase transformations depending on the type and amount of dopants and the sintering temperatures were studied for the 2 components (CaO-, Y2O3-, MgO-ZrO2) and the 3 components(MgO-ZrO2-Al2O3)ZrO2 powder by X-ray diffraction and Raman spectroscopy. In the CaO- and Y2O3-ZrO2 systems, as the CaO and Y2O3 contents increased to 6~15mol% and 3~15mol% respectively, we were not able to identify between tetragonal and cubic in the X-ray diffraction patterns. On the other hand, all Raman modes shifted to lower wavenumbers, decreasing in intensity and the number of bands, markedly. These phenomena were caused by tetragonallongrightarrowcubic phase transformation and interpreted by the breakdown of the wave vector selection rule(k=0) and the structural disorder associated with the formation of oxygen sublattice which was caused by the substitution between Zr4+ ion and Ca2+ or Y3+ ion in ZrO2 matrix. The monoclinic to cubic phase transformation occurred in 10mol% MgO-ZrO2 system. As the Al2O3 content increased from 0 to 20mol% in the MgO-ZrO2-Al2O3 systems, cubic phase transformed to monoclinic phase, this is because the MgO didn't play a role in a stabilizer because of the formation of the spinel(MgAl2O4) by the reaction between MgO and Al2O3, Also, the ZrO2 phase transformation was explained by the change of it's lattice parameters depending on the type and amount of dopants. Namely, as the amount of dopant increased to 10~13mol%, the axial ra-tio c/a came close to unity with increasing the lattice parameter a and decreasing the lattice parameter c. At that time, the tetragonallongrightarrowcubic phase transformation occurred.

  • PDF

Fabrication of $BaTiO_3-PTCR$ Ceramic Resister Prepared by Direct Wet Process (습식 직접합성법을 이용한 PTCR 소자개발 연구)

  • 이경희;이병하;이희승
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.61-65
    • /
    • 1985
  • $BaTiO_3$ powders doped with $BaTiO_3$ and $Nb_2O_5$ at 9$0^{\circ}C$ for 1hr. were synthesized by Direct Wet Process. These powders were very homogeneous and fine particle size. To obtain the highe PTCR effect AST($1/3Al_2O_3$.$3/4SiO_2$.$1/4TiO_2$) and $MnO_2$ were added in the semiconduc-ting $BaTiO_3$. In this case $Bi_2O_3$ and $MnO_2$ were used in the form of $Bi(NO)_3$ and $MnCl_2$.$4H_2O$ solution for Direct Wet Process. $BaTiO_3$ doped Nb2O5 and $MnO_2$ demostrated greater PTCR effect than $BaTiO_3$ doped $Nn_2O_5$ only.

  • PDF

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

GROWTH AND ELECTRICAL PROPERTIES OF (La,Sr)CoO$_3$/Pb(Zr,Ti)O$_3$/(La,Sr)CoO$_3$ HETEROSTRUCTURES FOR FIELD EFFECT TRANSISTOR

  • Lee, J.;Kim, S.W.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.839-846
    • /
    • 1996
  • Epitaxial (La, Sr)$CoO_3/Pb(Zr,\;Ti)O_3/(La,\;Sr)CoO_3$by pulsed laser deposition for ferroelectric field effect transistor. Epitaxial $LaCoO_3/Pb(Zr,\;Ti)O_3/(La,\;Sr)CoO_3$ heterostructures exhibited 70$\mu C/cm^2$ and 17 $\mu C/cm^2$at a positively and negatively poled states, respectively. On the other hand, epitaxial (La, Sr)$CoO_3/Pb(Zr,\;Ti)O_3/LaCoO_3$heterostructures show the remnant polarization states opposite to the $LaCoO_3/Pb(Zr,\;Ti)O_3/(La,\;Sr)CoO_3$ heterostructures. This indicates that the interface between (La, Sr)$CoO_3$ (LSCO) and $Pb(Zr, Ti)O_3(PZT)$ layers affects the asymmetric polarization remanence through electrochemical nature. The resistivity of $LaCoO_3$ (LCO) layer was found to be dependent on an ambient oxygen, primarily the ambient oxygen pressure during deposition. The resistivity of the LCO layer varied in the range of 0.1-100 $\Omega$cm. It is suggested that, with an appropriate resistivity of the LCO layer, the LCO/PZT/LSCO heterostructure can be used as the ferroelectric field effect transistor.

  • PDF