• Title/Summary/Keyword: Nyquist Interpolation

Search Result 15, Processing Time 0.02 seconds

A 3.3V 8-bit 500MSPS Nyquist CMOS A/D Converter Based on an Interpolation Architecture (Interpolation 기법을 이용한 3.3V 8-bit 500MSPS Nyquist CMOS A/D Converter의 설계)

  • 김상규;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.67-74
    • /
    • 2004
  • In this paper, a 3.3V 8-bit 500MSPS based on an interpolation architecture CMOS A/D converter is designed. In order to overcome the problems of high speed operation, a novel pre-amplifier, a circuit for the Reference Fluctuation, and an Averaging Resistor are proposed. The proposed Interpolation A/D Converter consists of Track & Hold, four resistive ladders with 256 taps, 128 comparators, and digital blocks. The proposed A/D Converter is based on 0.35um 2-poly 4-metal N-well CMOS technology. The A/D Converter dissipates 440 mW at a 3.3 Volt single power supply and occupies a chip area of 2250um x 3080um.

Sub-Nyquist Nonuniform Sampling and Perfect Reconstruction of Speech Signals (음성신호의 Sub-Nyquist 비균일 표준화 및 완전 복구에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.153-170
    • /
    • 2005
  • The sub-Nyquist nonuniform sampling (SNNS) and the perfect reconstruction (PR) formula are proposed for the development of a systematic method to obtain minimal representation of a speech signal. In the proposed method, the instantaneous sampling frequency (ISF) varies, depending on the least upper boundary of spectral support of a speech signal in time-frequency domain (TFD). The definition of the instantaneous bandwidth (IB), which determines the ISF and is used for generating the set of samples that represent continuous-time signals perfectly, is given. Also, the spectral characteristics of the sampled data generated by the sub-Nyquist nonuniform sampling method is analyzed. The proposed method doesn't generate the redundant samples due to the time-varying property of the instantaneous bandwidth of a speech signal.

  • PDF

Design method of interpolation kernel using piecewise $\textit{n}$ th polynomials

  • Honma, Akihiro;Aikawa, Naoyuki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.694-697
    • /
    • 2002
  • Sampling rate conversion widely used in subband coding, A/D and D/A transitions etc. is an important techniques. Nyquist filters and the filter banks have been used far the sampling converter. However, they need many memories and, whenever the sampling rate is changed it is necessary to redesign filters. Then we propose design method of the new interpolation kernel. Design method of the new interpolation kernel is approximated each piecewise of lowpass filter by n th polynomials. The proposed kernel is not redesigned, whenever the sampling rate is changed. The proposed kernel is a continuous function, the sampling rate of the rational number can be converted.

  • PDF

Design of an 1.8V 6-bit 2GSPS CMOS ADC with an One-Zero Detecting Encoder and Buffered Reference (One-Zero 감지기와 버퍼드 기준 저항열을 가진 1.8V 6-bit 2GSPS CMOS ADC 설계)

  • Park Yu Jin;Hwang Sang Hoon;Song Min Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, CMOS A/D converter with 6bit 2GSPS Nyquist input at 1.8V is designed. In order to obtain the resolution of 6bit and the character of high-speed operation, we present an Interpolation type architecture. In order to overcome the problems of high speed operation, a novel One-zero Detecting Encoder, a circuit to reduce the Reference Fluctuation, an Averaging Resistor and a Track & Hold, a novel Buffered Reference for the improved SNR are proposed. The proposed ADC is based on 0.18um 1-poly 3-metal N-well CMOS technology, and it consumes 145mW at 1.8V power supply and occupies chip area of 977um $\times$ 1040um. Experimental result show that SNDR is 36.25 dB when sampling frequency is 2GHz and INL/DNL is $\pm$0.5LSB at static performance.

A 4x Time-Domain Interpolation 6-bit 3.4 GS/s 12.6 mW Flash ADC in 65 nm CMOS

  • Liu, Jianwei;Chan, Chi-Hang;Sin, Sai-Weng;U, Seng-Pan;Martins, Rui Paulo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.395-404
    • /
    • 2016
  • A 6-bit 3.4 GS/s flash ADC in a 65 nm CMOS process is reported along with the proposed 4x time-domain interpolation technique which allows the reduction of the number of comparators from the conventional $2^N-1$ to $2^{N-2}$ in a N-bit flash ADC. The proposed scheme effectively achieves a 4x interpolation factor with simple SR-latches without extra clocking and calibration hardware overhead in the interpolated stage where only offset between the $2^{N-2}$ comparators needs to be calibrated. The offset in SR-latches is within ${\pm}0.5$ LSB in the reported ADC under a wide range of process, voltage supply, and temperature (PVT). The design considerations of the proposed technique are detailed in this paper. The prototype achieves 3.4 GS/s with 5.4-bit ENOB at Nyquist and consumes 12.6 mW power at 1 V supply, yielding a Walden FoM of 89 fJ/conversion-step.

An interpolation 1-D kernel with quadratic polynomials

  • Ozawa, Kazuhiro;Aikawa, Naoyuki;Sato, Masamitsu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.563-566
    • /
    • 2000
  • Sampling rate conversion widely used in subband coding, A/D and D/A transitions etc. is an important techniques Nyquist filters and the filter banks have been used for the sampling converter. However, they need many memories and, whenever the sampling rate is changed, it is necessary to design filters. So the objective of this paper is to present a new kernel that is quick to evaluate and has a good stopband performance.

  • PDF

Design of the 1.8V 6-bit 2GSPS CMOS ADC for the DVD PRML (DVD PRML을 위한 1.8V 6-bit 2GSPS CMOS ADC 설계)

  • Park Yu-Jin;Song Min-kyu
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.537-540
    • /
    • 2004
  • In this paper, CMOS A/D converter with 6bit 2GSPS Nyquist input at 1.8V is designed. In order to obtain the resolution of 6bit and the character of high-speed operation. we present an Interpolation type architecture. In order to overcome the problems of high speed operation further a novel encoder, a circuit for the Reference Fluctuation, an Averaging Resistor and a Track & Hold for the improved SNR are proposed. The proposed Interpolation ADC consists of Track & Holt four resistive ladders with 64 taps, 32 comparators and digital blocks. The proposed ADC is based on 0.18um 1-poly 3-metal N-well CMOS technology, and it consumes 145mW at 1.8V power supply.

  • PDF

A New Fading Estimation Method for PSAM in Digital Land Mobile Radio Channels (PSAM방식에 적용할 수 있는 새로운 페이딩 추정방식)

  • 김영수;김창주;정구영;문재경;박한규;최상삼
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.126-136
    • /
    • 1997
  • When we apply the spectrally efficient quadrature amplitude modulation(QAM) to mobile communications, it is necessary to estimate and compensate the channel charac- teristics. In this paper, a new type fading estimation method for PSAM using sinc function is presented. Gaussian interpolation method has a drawback that the performance degrades rapidly if pilot symbol period increases even though pilot sysbol period is less than Nyquist sampling rate. The Wiener filter method does not degrade until pilot symbol period is equal to the Nyquist sampling rate. It is difficult for Wiener filter method to be applied to real system because autocorrelation function of channel gain, Doppler frequency and SNR(signal to noise ratio) must be known to optimize the filter coefficients. But proposed method has a similar performance to the Wiener filter method, and does not need to know the autocorrelation function of channel gain, the doppler frequency and SNR. Therefore the proposed method cna be applied to real system easily.

  • PDF

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

A 1-V 1.6-GS/s 5.58-ENOB CMOS Flash ADC using Time-Domain Comparator

  • Lee, Han-Yeol;Jeong, Dong-Gil;Hwang, Yu-Jeong;Lee, Hyun-Bae;Jang, Young-Chan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • A 1-V 1.6-GS/s 5.58-ENOB flash ADC with a high-speed time-domain comparator is proposed. The proposed time-domain comparator, which consumes low power, improves the comparison capability in high-speed operations and results in the removal of preamplifiers from the first-stage of the flash ADC. The time interpolation with two factors, implemented using the proposed time-domain comparator array and SR latch array, reduces the area and power consumption. The proposed flash ADC has been implemented using a 65-nm 1-poly 8-metal CMOS process with a 1-V supply voltage. The measured DNL and INL are 0.28 and 0.41 LSB, respectively. The SNDR is measured to be 35.37 dB at the Nyquist frequency. The FoM and chip area of the flash ADC are 0.38 pJ/c-s and $620{\times}340{\mu}m^2$, respectively.