• Title/Summary/Keyword: Nylon-66

Search Result 70, Processing Time 0.021 seconds

Characterization of Nylon 66 Non-woven via Electrospinning (전기방사된 나일론 66 부직포의 특성)

  • Kim, Chi-Hun;Jung, Yoon-Ho;Kim, Hak-Yong;Ryu, Young-Jun;Lee, Douk-Rae;Park, Soo-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.265-266
    • /
    • 2003
  • The first developed engineering plastic and synthetic fiber, Nylon has been widely used because of its excellent properties. Recently, electrospinning has been gradually spotlighted as a different method of producing fibers, in which fibers of submicron can be consistently produced [1,2]. In this work, we have prepared nanofiber non-woven from Nylon 66 of which properties were investigated. The morphological properties of Nylon 66 non-woven was observed by SEM. (omitted)

  • PDF

Exposure Assessment for Volatile Organic Compounds Generated through Extruding Work with Nylon 66 Resin (Nylon 66 수지의 압출 작업시 발생하는 휘발성유기화합물에 대한 노출평가)

  • Park, Seung-Hyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.256-262
    • /
    • 2014
  • Objectives: The purpose of this study was to identify the major volatile organic compounds generated during extrusion work with nylon 66 resin and evaluate causes of discomfort among extrusion workers. Methods: A thermal decomposition experiment using nylon 66 resin collected at a worksite was conducted in the laboratory. Based on hazards identified through the thermal decomposition experiment, the exposure levels of the workers were evaluated. Results: The major decomposition products were formaldehyde, acetaldehyde, aniline, cyclopentanone and diphenyl amine. These materials were identical to those sampled in the extrusion booth. The sources of the annoying smells, about which the workers had complained, were formaldehyde, aniline, diphenyl amine, and other hazards in the vapor and fine particles produced by the extrusion work. Formaldehyde, acetaldehyde, and aniline were detected from air samples among workers involved in extrusion work. However, the concentration levels were much lower than Korean occupational exposure limits. The average concentration levels of formaldehyde, acetaldehyde, and aniline were 0.0120 ppm, 0.0036 ppm and 0.0006 ppm, respectively. Conclusions: The extrusion process at around $300^{\circ}C$ thermally decomposes the nylon 66 resin, emitting formaldehyde, aniline, and other hazards, which might have made workers uncomfortable due to their smells. The workers exposure levels to volatile organic compounds were far lower than Korean occupational exposure limits. However, since formaldehyde is a human carcinogen and acetaldehyde and aniline are also confirmed animal carcinogens, it is recommended that exposure levels should be maintained at a minimum level.

Antibacterial Finishing of Footwear Nylon 66 Fabric with Sericite and Medilite (견운모와 맥반석을 이용한 신발용 나일론 66직물의 항균가공)

  • Lee, Eon-Pil;Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.9 no.1
    • /
    • pp.96-102
    • /
    • 2007
  • Antibacterial finishing of nylon 66 fabrics was carried out with sericite and medilite which are a cheap price antibacterial agents and had excellent antibacterial effects. The particle size of sericite and medilite was 15 ${\mu}m$ and 30 ${\mu}m$. The antibacterial and deodorant ratio, tensile and tear strength, peel strength were examined to investigate the change of physical properties and antibacterial effect. The results are as follows. 1. Peel strength is increased with increasing adhesive content, and satisfied standard value of peel strength when adhesive content is 20 $g/m^2$. Also peel strength was decreased with increasing antibacterial agent content and particle size in the adhesives. 2. Tensile and tear strength were not related with antibacterial agent content in the adhesives. 3. Laundering nylon 66 fabric treated with antibacterial agent, the optimum content satisfying Korean Standard(KS) is 8%. The antibacterial and deodorant ratio were not affected by several types of adhesives.

Dyeing Properties of Nylon 66 Nano Fiber with High Molecular Mass Acid Dyes

  • Lee Kwon Sun;Lee Beom Soo;Park Young Hwan;Park Yoon Chul;Kim Yong Min;Jeong Sung Hoon;Kim Sung Dong
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2005
  • Research and development of nano fiber products is very active over the world. Physical characteristics and dyeing properties of nylon 66 nano fiber were investigated in this study. X-ray diffraction, DSC, analysis of amino end group, and water absorption were performed to get information concerning physical properties of nano fiber. Nylon 66 nano fiber was dyed with high molecular mass acid dyes. Effects of dyeing temperature, pH of dyeing solution, and concentration of acid dyes on dyeing properties such as rate of dyeing and the extent of exhaustion, were examined and compared to those of regu­lar fiber. It was found that nano fiber adsorbed acid dyes at lower temperature, got rapidly dyed, and its extents of exhaustion at specific dyeing temperature were higher than regular fiber. It was also observed that nano fiber could adsorb a large amount of acid dye without a significant loss in the extent of exhaustion. Washing fastness of the dyed nano fiber was lower by $1/2\~1$ grade, light fastness by 1 grade than the dyed regular fiber.

Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites (카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화)

  • 홍순곤;변준형;황병선;강범수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF

The Effect of Coagulant on the Post Drawing and Morphology of Wet Spun Regenerated SF/Nylon 6 Blend Filaments

  • Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper, the regenerated silk fibroin (SF)/nylon 6 blend filaments were fabricated using wet spinning technique and the effect of coagulant on the post drawing and morphology of blend filaments was investigated. In the result of wet spinnability, methanol, acetone, DMF, and THF showed relatively good coagulation strength and fiber formation for the regenerated SF. On the contrary, they did not exhibit strong enough to produce a uniform nylon 6 filament due to the lack of coagulation strength. In the examination of post drawing performance, methanol showed the highest maximum draw ratio of the blend filament over all blend ratios. The maximum draw ratio of SF/nylon 6 blend filaments decreased with the reduction of SF content regardless of type of coagulant. SEM observation showed the consistent result with that of post-drawing performance. As SF content decreased, the uniform and regular structure was changed to irregular one. In particular, the severe macro-phase separation between SF and nylon 6 could be detected in the 50/50 SF/nylon 6 blend filaments coagulated in methanol and THF.

Dyeing and Antimicrobial Properties of Cellulose and Nylon Fabrics Treated with Artemisia Extracts (셀룰로오스와 나일론 직물의 쑥 추출물에 대한 염색성과 항균성)

  • Shin, Seung-Yeop;Chung, Haewon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1130-1138
    • /
    • 2013
  • We examined dyeing properties using cotton, Tencel, general nylon 66 and hollow nylon 66 treated with aqueous and ethanol extracts without mordant. The antimicrobial properties of fabrics treated with Artemisia extracts against gram positive Staphylococcus aureus (S. aureus) and gram negative Klebsiella pneumonia (K. pneumonia) were also examined. The dying solution concentrations were determined from a calibration curve of the concentration and absorbance of Artemisia extracts. FTIR spectra confirmed that antimicrobial components and colorants (such as 1,8-cineol, thujone, caffeoylquinic acid and chlorophyll) were more present in ethanol extract than in aqueous extract. Nylons had higher $a^*$ and $b^*$, and lower $L^*$ values than cellulose fabrics dyed with aqueous solutions of Artemisia extracts; however, the dyed nylon fabrics were brown. Fabrics dyed with ethanol-extract added solutions were greener and had higher antimicrobial properties than those dyed with aqueous solutions; however, they faded and lost their antimicrobial properties after laundering. Fabrics regained their antimicrobial properties (especially against S. aureus) by the spraying of Artemisia ethanol extract; therefore, the application of Artemisia ethanol extract onto underwear is expected to relieve atopic dermatitis.

Study on Dyeing Properties of Nylon 66 Nano Fiber (1) -Levelling Type Acid Dyes- (나일론 66 나노섬유의 염색성에 관한 연구(1) -균염성 산성염료-)

  • 이권선;이범수;박영환;김성동;김용민;오명준;정성훈
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • In recent, development of nano fiber has been one of the most active subjects in the world. Nano fiber is defined as a ultra fine yarn with a diameter unit of $10-100\times10^{-9}meter$, which is possible to be produced by an electro-spinning technology. In this study, physical characteristics and dyeing properties of nylon 66 nano fiber were investigated. Nylon 66 nano fiber was dyed with levelling type acid dyes. X-ray diffraction method and DSC analysis were used for the measurement of the degree of crystallization. Analysis of amino end groups was also performed in order to examine a relationship between number of amino groups and its dyeing property as well as water absorption behavior. The maximum exhaustion % of dyes and dyeing rate under various dyeing conditions, such as dyeing temperature and pH in dye bath, along with build-up properties for 2 acid dyes were evaluated. It was found that the degree of crystallization of nano fiber was smaller than that of regular fiber, and amino end groups of nano fiber were less than regular fiber. Half dyeing time of nano fiber was shorter than regular fiber because of the bigger specific surface area. Effect of pH on exhaustion % was small in case of nano fiber. Exhaustion of nano fiber increased with higher concentration of dye.

Transient Middle Cerebral Artery Occlusion Model in Mouse using Nylon Thread (Nylon Thread를 이용한 mouse 에서의 Transient middle cerebral artery occlusion (MCAO) model 확립)

  • Lim, Byung-Chul;Sung, Ji-Hee;Kim, Ha-Na;Park, Seoung-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.186-191
    • /
    • 2019
  • Introduction: In aged people, stroke incidence is increased. But standardized experimental animal protocol study for the research of stroke therapy is rare. There is little report on the success rate of cerebral artery occlusion model using standardized Nylon thread length of precise thread end-size controlled. Method: In this study, the operator intended the occlusion of middle cerebral artery (MCA) using $0.18{\pm}0.02mm$ end 5-0 Nylon thread. Middle cerebral artery occlusion was induced for 60min under isoflurane anesthesia. After 60min, the operator removed the Nylon thread and reperfusion was induced for 23hrs. The mice was killed 23hrs after reperfusion and infarction area of brain was confirmed by 1.5% TTC (2,3,5-tryphenyl tetrazolium chloride) staining. Results: According to end size and insert length of Nylon thread, Middle cerebral artery occlusion (n=50), internal carotid artery occlusion (n= 14), distal middle cerebral artery occlusion (n= 36), anterior cerebral artery (n= 1) were induced. And no infarction (n= 50) was observed. Conclusion: According to weight of mice, the operator induced reversible cerebral artery occlusion model by different insert length (30.0~36.9g : 9.0mm, 37.0~40.0g : 9.5mm) of Nylon thread. Success of cerebral artery occlusion model was confirmed by checking infarction area using TTC staining. The success rate (66.9%, 101/151) of reversible cerebral artery occlusion model in the mouse and the operational conditions are shown.