• Title/Summary/Keyword: Nutrient Variation

Search Result 340, Processing Time 0.026 seconds

Tidal Variations of the Chemical Constituent Contents in the Laver Bed Sea Waters in Wan Do Gun From October 1968 to February 1969 (완도읍 및 평일만 김밭에 있어서의 동계 오개월간 수질의 조수에 따른 변동)

  • Won, Chong Hun;Park Kil Sun
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.14-29
    • /
    • 1970
  • Tidal variations of various chemical constituents in the laver bed sea waters in Wan Do Gun were determined over one spring tidal cycle from Oct. 1968 to Feb. 1969. Total ranges and means of the contents at Pyung-il Do and Wan Do are as follows. Although the average monthly variations of each content at Pyung-il Do were similar to those at Wan Do, most of the contents at Pyung-il Do were at a slightly higher level than at Wan Do. The values of silicate-silicon, phosphate- phosphorus and soluble iron, however, showed high levels at Wan Do. Chlorinity, magnesium, calcium, dissolved oxygen, silicate-silicon and phosphate-phosphorus contents increased from Oct. 1968 to Feb. 1969, though the content of soluble iron decreased before December and slightly increased in January and February. The average monthly variations of ammonia-nitrogen and nitrate-nitrogen contents were irregular. The nitrite-nitrogen content appeared in trace amounts in the months with a comparatively high water temperature, i.e., October and November, but in midwinter it was undetected. The ranges of the tidal variations of the contents of each chemical constituent were not significantly wide, though the contents varied excessively by the hour, and this may show the irregularity of the water quality in Wan Do Gun coastal area. As a rule, no regular tidal variation of the chlorinity was observed except slightly decreased value at ebb tide at Wan Do. In general, although the pattern of the variations of calcium and magnesium contents were similar to that of the chlorinity, no definite relationships between these constituents and chlorinity were observed. Tidal variations of the dissolved oxygen content, nutrient salts and soluble iron were irregular.

  • PDF

Long-term Trends in Pelagic Environments of the East Sea Ecosystem

  • Lee, Chung-Il;Lee, Jae-Young;Choi, Kwang-Ho;Park, Sung-Eun
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Physical and biological environmental variations in the East Sea were investigated by analysing time-series of oceanographic data and meteorological indices. From 1971 to 2000, dominant periodicity in water temperature variations had two apparent periods of 3 to 4 years and of decades, especially in the southwestern part of the East Sea affected by the influence of inflowing Tsushima warm current. Fluctuating water temperature within a certain period appears to respond to El $Ni{\tilde{n}}o$ events with a time lag. It was found that there was a strong correlation between water temperature and El $Ni{\tilde{n}}o$ events with a time lag of 1.5 and 5.5 years for periods of 3 to 6 years and of decades, respectively. Corresponding with El $Ni{\tilde{n}}o$ events, water temperature variability also showed strong correlation with shift and/or changes in biological and chemical environments of nutrient concentrations, zooplankton biomass, and fisheries. However, there also occurred a short-term periodicity of water temperature variations. Within a period of 1 to 4 years, a relatively short-term cycle of water temperature variation had strong correlation with other climate indices such as Pacific Decadal Oscillation and monsoon index. After comparing coherence and phase spectrum between water temperature and different climate indices, we found that there was a shift of coherent periods to another climate index during the years when climate regime shift was reported.

Agricultural Application of Ground Remote Sensing (지상 원격탐사의 농업적 활용)

  • Hong, Soon-Dal;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.92-103
    • /
    • 2003
  • Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.

Comparison of Venting Modes for Bench Scale Treatment of Diesel Contaminated Soil (디젤오염토양의 Bench Scale 처리에 있어서 벤팅모드 비교)

  • Kim, Young-Am;Lee, Yong-Hee;Lee, Dong-Sun;Suh, Myung-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.499-505
    • /
    • 2006
  • Bioventing efficiency was compared in a continuous and an intermittent(6hr injection and 6hr rest) air injection mode. Two lab-scale columns which packed with 5 kg of soil artificially contaminated by diesel oil were operated. The columns were maintained at the $25^{\circ}C{\pm}2.5$ in order to minimize the effect of exterior temperature variation. The flow rate of air injection mode were maintained constantly at the flow rate of 10 ml/min. The moisture of the columns was stably maintained at $60{\sim}80%$ of field capacity. The nutrient compounds were added to make C:N:P ratio as 100:10:l. The continuous and intermittent injection modes showed 67.56% and 69.63% reduction of initial TPH concentration during 90 days, respectively. Two venting modes showed similar results in the analysis of the trends of the hydrocarbon utilizing bacterial counts for operating periods. The carbon dioxide production rate of the continuous injection mode was higher than that of intermittent injection mode. The loss of diesel oil by volatilization in the continuous and intermittent injection modes were about 5% and 1%, respectively. The lower volatilization loss in the intermittent injection mode suggested that the biodegradation of TPH in the intermittent injection mode was greater than that of the continuous mode. These results suggested that the intermittent injection mode is more efficient than the continuous venting mode.

Moisture Concentration Variation of Silages Produced on Commercial Farms in the South-Central USA

  • Han, K.J.;Pitman, W.D.;Chapple, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1436-1442
    • /
    • 2014
  • Preservation of forage crops as silage offers opportunity to avoid the high risk of rain-damaged hay in the humid south-central USA. Recent developments with baled silage or baleage make silage a less expensive option than typical chopped silage. Silage has been important in the region primarily for dairy production, but baleage has become an option for the more extensive beef cattle industry in the region. Silage samples submitted to the Louisiana State University Agricultural Center Forage Quality Lab from 2006 through 2013 were assessed for dry matter (DM) and forage nutritive characteristics of chopped silage and baleage of the different forage types from commercial farms primarily in Louisiana and Mississippi. Of the 1,308 silage samples submitted, 1,065 were annual ryegrass (AR) with small grains (SG), the warm-season annual (WA) grasses, sorghums and pearl millet, and the warm-season perennial (WP) grasses, bermudagrass and bahiagrass, providing the remaining samples. Concentration of DM was used to indicate an effective ensiling opportunity, and AR silage was more frequently within the target DM range than was the WA forage group. The AR samples also indicated a high-quality forage with average crude protein (CP) of 130 g/kg and total digestible nutrient (TDN) near 600 g/kg. The cooler winter weather at harvest apparently complicated harvest of SG silage with chopped SG silage lower in both CP and TDN (104 and 553 g/kg, respectively) than either AR silage or baleage of SG (137 and 624 g/kg for CP and TDN, respectively). The hot, humid summer weather along with large stems and large forage quantities of the WA grasses and the inherently higher fiber concentration of WP grasses at harvest stage indicate that preservation of these forage types as silage will be challenging, although successful commercial silage samples of each forage type and preservation approach were included among samples of silages produced in the region.

Development and Evaluation of Core Collection Using Qualitative and Quantitative Trait Descriptor in Sesame (Sesamum indicum L.) Germplasm

  • Park, Jong-Hyun;Suresh, Sundan;Raveendar, Sebastin;Baek, Hyung-Jin;Kim, Chung-Kon;Lee, Sokyoung;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Chul-Won;Chung, Jong-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Sesame (Sesamum indicum L.) is one of the most important oilseed crops with high oil contents and rich nutrient value. The development of a core collection could facilitate easier access to sesame genetic resources for their use in crop improvement programs and simplify the genebank management. The present study was initiated to the development and evaluation of a core collection of sesame based on 5 qualitative and 10 quantitative trait descriptors on 2,751 sesame accessions. The accessions were different countries of origin. About 10.1 percent of accessions were selected by using the power core program to constitute a core collection consisting of 278 accessions. Mean comparisons using t-test, Nei's diversity index of 10 morphological descriptors and correlation coefficients among traits indicated that the existing genetic variation for these traits in the entire collection has been preserved in the core collection. The results from this study will provide effective information for future germplasm conservation and improvement programs in sesame.

Decomposition characteristics of pollutants by time dependent variation of livestock carcass leachate (매몰지 침출수의 경시변화에 따른 오염물질 분해특성)

  • Kim, Yong Jun;Kang, Young Yeul;Hwang, Dong Gun;Jeon, Tae Wan;Shin, Sun Kyoung
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.338-347
    • /
    • 2017
  • The purpose of this study is to investigation of the decomposition characteristics in a pilot-scale burial site of livestock in three kinds of typical soils in Korea: sandy loam soil, clay loam soil, and sandy soil. In this study, we confirmed that most of the animals in the condition were decomposed within three years as mentioned in the "Livestock burial regional environmental research guidelines." We also determined that the decomposition rate of dead cows was higher than that of dead pigs, and that the biodegradation rate depends on the soil types in the following order: sandy soil > clay loam soil > sandy loam soil. The various external environment factors, such as temperature, moisture, pH, earthiness, nutrient, and the burial depth, should be managed properly for appropriate decomposition of dead animals.

Variation of Soil and Leaf in a 'Wonhwang' Pear Orchard Appled by Selenium Solution (셀레늄 처리방법에 따른 '원황' 배 과원의 토양 및 수체 변화)

  • Choi, Hyun-Sug;Kim, Wol-Soo;Kim, Hyun-Ji;Choi, Kyeong-Ju;Lee, Youn
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.4
    • /
    • pp.541-548
    • /
    • 2010
  • This study was established on which the selenium (Se), known as one of the functional elements in the human body, treatment was the most effective for the Se uptake in the soil and tree. Se treatments included foliar application, soil fertigation, and trunk injection. Se fertigation and control had similar soil $P_2O_5$, K, and Mg concentrations, and calcium and Se concentrations in the soil were greater on the control and Se fertigation, respectively. Leaf characteristics were not different among the treated trees. No differences were observed for the leaf K and Ca concentrations among the treated trees, and foliar Mg was greater on the Se treated trees than the control. Se foliar application and trunk injection had greater Se concentrations in the leaves and fruits than the Se fertigation and control.

Analysis on the Actual Conditions of Wastewater Treatment Facilities in Chungcheongnam-do Province Industrial Complexes (충청남도 산업단지의 오·폐수처리실태 분석)

  • Lim, Bong-Su;Kim, Do-Young;Yi, Sang-Jin;Oh, Hye-Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.850-862
    • /
    • 2007
  • This study was carried out to survey the actual conditions of wastewater treatment facilities to obtain basic data for the management of wastewater from industrial complexes in Chungcheongnam-do province. Wastewater production flow per site area by watersheds was $49.2m^3/km^2/d$ for Sapgyoho, $8.1m^3/km^2/d$ for Anseongcheon, $5.7m^3/km^2/d$ for Seohae, and $2.9m^3/km^2/d$ for Geumgang. Sapgyoho showed 75% of the total production flow, which was the highest value, Geumgang showed 4% of total flow, which was the lowest value. Average total extra rate as production flow/capacity flow in the wastewater treatment facilities for industrial complex is 49%. Considering by watersheds, the extra rates of Seohae, Geumgang, Anseongcheon, and Sapgyoho, are 73%, 65%, 62%, and 33% respectively. This means that the design of capacity flow in wastewater treatment facilities was too large. Effluent concentration of wastewater treatment facilities did not exceed discharge limit mostly. The removal efficiency rate for water quality item was 90% in BOD, 70% in COD, 80% in SS, 30 to 80% in TN, and 20 to 90% in TP, so the organic removal was good, but the nutrient removal was low and interval of variation was high. The removal efficiency rate of the agricultural was industrial complexes is lower than the national and local complexes. The construction cost of the wastewater treatment facilities in Chungcheongnam-do was $1,756Won\;per\;m^3$, treatment cost was $189Won\;per\;m^3$, and they were about two times and 1.2 times higher than the nation-wide cost, respectively. The treatment cost consists of 39% for man power, 21% for chemical, 16% for power, 11% for sludge treatment, and 13% for others.

Assessment of Seasonal Variation in Water Quality in Daedong Lake (대동호의 시기별 및 계절별 수질변화 평가)

  • Yun, Jin-Ju;Kang, Se-Won;Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Hyun-Woo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.197-203
    • /
    • 2020
  • BACKGROUND: Most lakes have increased concerns about water pollution due to the inflow of non-point sources caused by human activities. Therefore, the lake water quality survey was conducted in order to propose effective plans for water quality management by analyzing the characteristics of lakes and the change of water quality. METHODS AND RESULTS: In order to investigate the physicochemical water quality in Daedong lake, water quality analysis was undertaken from July 2018 to June 2019. Water temperature was ranged from 7.8 to 34.3℃ and pH varied from 6.9 to 10.2. The concentration of Dissolved oxygen, Suspended solid, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were 5.6 ~ 17.2 mg/L, 2.4 ~ 35.3 mg/L, and 4.5 ~ 15.1 mg/L, and 0.9 ~ 2.8 mg/L, respectively. The Total Nitrogen (T-N) concentration ranged from 0.974 ~ 2.126 mg/L, and Total Phosphorus (T-P) concentration ranged from 0.014 ~ 0.057 mg/L. The Chlorophyll-a (Chl-a) ranged from 2.7 ~ 37.9 mg/㎥. Through Carlson TSIm assessment using T-P and Chl-a results, evaluating trophic state, Daedong lake was evaluated as mesotrophic. CONCLUSION: Water pollution management plan needs such as nutrient removal technology and nonpoint source management for prevention of eutrophication in Daedong lake.