• Title/Summary/Keyword: Numerical tank

Search Result 673, Processing Time 0.021 seconds

Seismic Performance Assessment of Atmospheric Surge Tank (노출형 조압수조의 해석모델별 내진성능평가)

  • Kim, Yongon;Ok, Seung-Yong;Kim, Il Gyu;Ryu, Seonho;Bae, Jungjoo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • This study investigates the seismic performance of the surge tank which is of the atmospheric type and constructed above the ground. For that purpose, three different numerical models of the surge tank have been taken into account. Two models are constructed to describe the surge tank with different support conditions: one is to model all supports as fixed, and the other is to use spring element for the rock conditions. The third model is constructed to describe not only the surge tank with spring element of the rocks but also the vertical waterway tunnel. Through the time-history analysis of the surge tank subjected to three artificially excited ground motions, it is demonstrated that there can be much difference between the three models of our interest according to the support conditions and inclusion of the vertical waterway tunnel. However, their seismic performances still remain below the safety criteria, i.e., dynamic allowable stress. Also, the numerical results let us know where the critical sections occur. These results could be used to develop the efficient seismic enhancement method for the surge tank.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

Numerical Simulation of Sloshing Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 슬로싱 시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.687-693
    • /
    • 2016
  • The rapid turning and acceleration movement of a rotorcraft leads to a sloshing phenomenon in the fuel tank. Sloshing caused by rapid movement can affect the internal components by creating an excessive load. In severe situations, the resulting damage to the internal components and pipes can also lead to the tearing of the fuel tank itself. Therefore, to improve the survivability of the crew, the internal components of the fuel tank must be designed to retain their structural soundness during the sloshing phenomenon. In order to accomplish this, the sloshing load acting on the components first needs to be determined. This paper investigates the sloshing load applied to the internal components by performing numerical analysis for rotary-wing aircraft fuel tanks in the sloshing test. Fluid-Structural Interaction (FSI) analysis based on smoothed particle hydrodynamics (SPH) is conducted and the conditions specified in the US military standard (MIL-DTL-27422D) are employed for the numerical simulation. Based on this numerical simulation, by analyzing the load applied to the internal components of the fuel tank due to the sloshing phenomenon, the possibility of obtaining the design data by numerical analysis is examined.

A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank (수리/수치파동수조에서 안정적인 쓰나미 조파를 위한 고찰)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.805-817
    • /
    • 2016
  • This study considered the existing approximation theories of solitary wave for stable generation of it with different waveforms in a hydraulic/numerical wave tank for coping with the tsunami. Based on the approximation theory equations, two methods were proposed to estimate various waveforms of solitary wave. They estimate different waveforms and flow rates by applying waveform distribution factor and virtual depth factor with the original approximate expressions of solitary wave. Newly proposed estimation methods of solitary wave were applied in the wave generation of hydraulic/numerical wave tank. In the result, it was able to estimate the positional information signal of wave generator in the hydraulic wave tank and to find that the signal was very similar to an input signal of existing hydraulic model experiment. The waveform and velocity of solitary wave was applied to the numerical wave tank in order to generate wave, which enabled generate waveform of tsunami that was not reproduced with existing solitary wave approximation theory and found that the result had high conformity with existing experiment result. Therefore, it was able to validate and verify the two proposed estimation methods to generate stable tsunami in the hydraulic/numerical wave tank.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

A Study on Vibration Characteristics in Water Tank Structure (접수탱크구조의 진동특성에 관한 연구)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

A Study on the Leading/Unloading Time Prediction of the Ballast Tank (밸러스트 탱크의 급수/배수 시간 예측에 관한 연구)

  • Kim H. I.;Kim M. U.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-36
    • /
    • 2004
  • The ballast tank of a ship is a system that realizes the required shipping condition and controls the draft of a ship. The loading/unloading of the ballast tank is frequently operated during navigation and the accurate prediction of the loading/unloading time is very important. A numerical algorithm that predicts the loading/unloading time of the ballast tank has been developed and applied to the prediction of the loading/unloading time of the ballast tank with various piping systems. This algorithm can be useful in optimizing the ballast tank system in early design stage.

  • PDF

Characteristics of sloshing load and flow inside a tank with cylinder structures (실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성)

  • Ki Jong Kim;Hyun-Duk Seo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.

A Study on the Development of 2-Dimensional Numerical Wave Tank by the High-Order Spectral Method (고차 스펙트럴법에 의한 2차원 수치 파수조 개발에 관한 연구)

  • Y.J. Kim;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 1992
  • By introducing a body potential, the high-oder spectal method of Dommermuth and Yue(1987) is extended to treat the nonlinear interactions between the free surface and the submerged cylinder. A 2-dimensional numerical wave tank is developed based on this numerical scheme, and applied to the wave resistance problem and the wave maker problem. In the simulations, it is shown that the transient waves due to the impulsive start of the body motion make a practical obstacle to the acquisition of useful data from the numerical experiments. Gradual starting procedures are devised, and successful result of the quasi-steady state or the uniform regular wave group was obtained. Within the author's present knowledge, the present numerical scheme is one of the most efficient numerical schemes which can treat the nonlinear interactions between the free surface and the body motion in time-domain.

  • PDF

Numerical Simulation of Unsteady Inviscid Waves by Spectral Method

  • Lee, Jin-Ho;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.140-145
    • /
    • 2000
  • The spectral method which is composed of an eigenfunction expansion of free modes in the wave number domain is used to produce two dimensional unsteady inviscid wave simulation such as progressive waves in a numerical pneumatic wave tank. A spatial and time dependent free surface elevation and the potential are calculated by integrating ODE derived from fully nonlinear kinematic and dynamic free surface boundary condition at each time step. The nonlinear characteristics in the waves by this method were notable as increasing wave steepness. This method is very useful and powerful in terms of saving computational time caused by rapid convergence exponentially with increasing number of nodes, even preserving accurate numerical results. Moreover, it will given us many possibilities to apply to naval and ocean engineering fields.

  • PDF