• 제목/요약/키워드: Numerical tank

검색결과 676건 처리시간 0.026초

산화제 탱크용 벤트릴리프밸브 설계 및 개발 (Design and Development of Vent Relief Valve for Oxidizer Tank)

  • 고현석;한상엽
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.854-856
    • /
    • 2011
  • 우주발사체의 액체 추진제 공급 시스템에 사용되는 산화제 탱크용 벤트릴리프밸브를 설계하였다. 벤트릴리프밸브는 충전 중 산화제 탱크의 배기를 담당하고 충전 후 과압이 걸리지 않도록 보호하는 역할을 한다. 충전 중 탱크 배기는 벤트밸브에서 담당하며 탱크의 보호는 릴리프밸브와 벤트밸브의 연계 작동을 통하여 이루어진다. 수치해석을 통하여 공압 성능 및 동특성이 밸브 요구조건을 만족하는 것을 확인하였다. 시제품을 제작한 후 벤트릴리프밸브의 성능을 평가하기 위한 시험을 수행하고 있다.

  • PDF

부정류 효과를 고려한 조압수조가 있는 상수관망의 파괴확률 (Probability of Pipe Breakage for Pipe Network with Surge Tank regarding Unsteady Effect)

  • 권혁재;이철응
    • 한국수자원학회논문집
    • /
    • 제42권10호
    • /
    • pp.785-793
    • /
    • 2009
  • 본 연구에서는 부정류 상태의 조압수조를 해석 할 수 있는 수치모형이 개발되었다. 그리고 부정류 효과를 고려한 파이프의 파괴확률 산정을 위한 신뢰성 모형이 개발되었다. 파이프 파괴의 상대적 위험도 평가와 조압수조의 기능성 평가를 위해 부정류 효과를 고려한 조압수조가 있는 상수관망 시스템의 파괴확률을 산정하였다. 신뢰성 해석을 통하여 부정류가 파괴확률을 크게 증가 시키는 것을 알 수 있었으며 조압수조가 부정류의 압력을 크게 감쇠시킴으로써 파괴확률을 현저히 저하시키는 것을 확인할 수 있었다.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

사각헝 탱크 구조의 접수 진동 특성에 관한 연구 (Analytical and Experimental Study on Vibration Characteristics for Rectangular Tank Structure Filled with Fluid)

  • 최수현;김극수;손성완
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.195-203
    • /
    • 2002
  • In the engine room and the aft part areas of the ship, there exist so many tank structures contacting with fresh water or sea water or oil. If these structures exhibit excessive vibrations during the sea trials, it takes a lot of cost, time and effort to improve vibration situation because the reinforcement work requires emptying the fluid out of the tanks, additional welding and special painting. It is therefore very important to predict a precise vibration characteristics of the tank structures at the design stage, however it is not easy to estimate vibration characteristics of the structures because of difficulties for accurate evaluation of the added (or virtual) mass effect due to the fluid inside the tank. In this paper, numerical and experimental approaches have been performed to present same fundamental data necessary for anti-vibration design of tank structures contacting with fluid, by investigating vibration behaviors of rectangular tank structure for various water depths.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

Numerical analysis for behavior of outer concrete tank in emergency LNG spillage

  • Lee, Jeong Su;Park, Chan Kyu;Lee, Yun;Kim, Ji-Hoon;Kwon, Seung Hee
    • Computers and Concrete
    • /
    • 제14권4호
    • /
    • pp.369-385
    • /
    • 2014
  • In the existing method for analyzing the liquid tightness of the outer concrete tank in an emergency LNG spillage, the temperature variation over time inside the tank, and the concrete properties dependent on temperature and internal moisture content, have not been taken into account. In this study, the analyses for a typical LNG concrete tank subjected to thermal load due to spillage were performed with three different cases: the existing method was adopted in the first case, the transient temperature variation was considered in the second, and the temperature-moisture content dependent concrete properties were taken into account as well as the transient states of temperature in the third. The analysis results for deformation, compressive zone size, cracking, and stress of reinforcements were compared, and a discussion on the difference between the results obtained from the different analysis cases was made.

Numerical Analysis of the Chemical Injection Characteristics Using a Low Reynolds Number Turbulence Model

  • Chang, Byong-Hoon;Chang Kyu;Park, Han-Rim
    • 에너지공학
    • /
    • 제8권1호
    • /
    • pp.110-118
    • /
    • 1999
  • In order to protect the nuclear reactor coolant system from corrosion, lithium is injected into the coolant from the chemical injection tank. The present study investigates the chemical injection characteristics of the injection tank using a low Reynolds number turbulence model. Laminar flow analysis showed very little diffusion of the jet and gave incorrect flow and concentration fields. A disk located near the inlet of the injection tank was effective in mixing the chemical additives in the top portion of the tank, and significant reduction in injection time was obtained.

  • PDF

유한차분법에 의한 2차원 탱크내의 유체유동해석 (Analysis of Fluid Flow in Two-dimensional Tank by Finite Difference Method)

  • 이경중;이기표
    • 대한조선학회지
    • /
    • 제24권3호
    • /
    • pp.9-16
    • /
    • 1987
  • In this paper, the fluid flow in the two-dimensional tank is analyzed by the Finite Difference Method. The Navier-Stokes equation is modified for the tank fixed coordinate system. For the treatment of the free surface, the Volume of Fluid Method by Hirt and Nichols is adopted. The continuity equation and the Poisson equation which is derived from the Navier-Stokes equation to find the pressure are solved by the Successive-Line-Overrelaxation Method. The comparison of the calculated results with experimental data show a favorable agreement. The fluid flow in the two-dimensional tank can be predicted reasonably before the free surface reaches breaking by this numerical method.

  • PDF

Optimization of the Mixing Flow in an Agitated Tank

  • Yoo, Dal-Hyun;Yang, Si-Young;Choi, Youn-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.151-157
    • /
    • 2005
  • In the chemical, mineral and electronics industries, mechanically stirred tanks are widely used for complex liquid and particle mixing processes. In order to understand the complex phenomena that occur in such tanks, it is necessary to investigate flow field in the vessel. Most difficulty on the numerical analysis of stirred tank flow field focused particularly on free surface analysis. In order to decrease the dead zone and improve the flow efficiency of a system with free surface, this paper presents a new method that overcomes free surface effects by properly combining the benefits of using experiment and 3-D CFD. This method is applied to study the mixing flow in an agitated tank. From the results of experimental studies using the PIV (particle image velocimetry) system, the distribution of mixing flow including free surface are obtained. And these values that are expressed as a velocity vector field have been patched for simulating the free surface. The results of velocity distribution obtained by 3-D CFD are compared with those of experimental results. The experimental data and the simulation results are in good agreement.

  • PDF

반응면기법을 이용한 침전조의 형상최적설계 (Shape Optimization of Sedimentation Tank Using Response Surface Method)

  • 김홍민;최승만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.