• 제목/요약/키워드: Numerical schemes

검색결과 757건 처리시간 0.022초

2차원 강소성 유한요소해석에서의 안정성 및 효율성 향상에 관한 연구

  • 박근;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.195-199
    • /
    • 1993
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode, shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two dimensional rigid-plastic finite element method using various type of elements and numerical integration schemes. AS metal forming examples, upsetting and backward extrusion are taken for comparison among the methods : various element types and numerical integration schemes. comparison is made in terms of stability and efficiency. As a result, it has been shown that the finite element computation is stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

HYBRID DIFFERENCE SCHEMES FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS

  • Priyadharshini, R.Mythili;Ramanujam, N.;Tamilselvan, A.
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1001-1015
    • /
    • 2009
  • In this paper, two hybrid difference schemes on the Shishkin mesh are constructed for solving a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a small parameter multiplying the highest derivative. We prove that the schemes are almost second order convergence in the supremum norm independent of the diffusion parameter. Error bounds for the numerical solution and its derivative are established. Numerical results are provided to illustrate the theoretical results.

  • PDF

3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구 (A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation)

  • 하영록;김용직
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

SUBSTRUCTURING ALGORITHM FOR STRUCTURAL OPTIMIZATION USING THE FORCE METHOD

  • JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권2호
    • /
    • pp.41-47
    • /
    • 1998
  • We consider some numerical solution methods for equality-constrained quadratic problems in the context of structural analysis. Sparse orthogonal schemes for linear least squares problem are adapted to handle the solution step of the force method. We also examine these schemes with substructuring concepts.

  • PDF

A NEW CLASS OF INTERPOLATORY HERMITE SUBDIVISION SCHEMES REPRODUCING POLYNOMIALS

  • Jeong, Byeongseon
    • East Asian mathematical journal
    • /
    • 제38권3호
    • /
    • pp.365-377
    • /
    • 2022
  • In this paper, we present a new class of interpolatory Hermite subdivision schemes of order 2 reproducing polynomials. Each member in this class, denoted by Hn for n ≥ 1, preserves polynomials of degree up to 4n + 1 admitting the approximation order of 4n + 2. Furthermore, it has free parameters which provide flexibility in designing curves/surfaces. H1, the simplest and the most attractive scheme in this class, achieves C4 smoothness with the parameters in certain ranges, and its performance is demonstrated with numerical examples.

고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴 (Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design)

  • 김종암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF

기상 및 기후의 수치예측에 대한 슈퍼컴퓨터의 역할 (Role of Supercomputers in Numerical Prediction of Weather and Climate)

  • 박선기
    • 대기
    • /
    • 제14권4호
    • /
    • pp.19-23
    • /
    • 2004
  • Progresses in numerical prediction of weather and climate have been in parallel with those of computing resources, especially the development of supercomputers. Advanced techniques in numerical modeling, computational schemes, and data assimilation cloud not have been practically achieved without the aid of supercomputers. With such techniques and computing powers, the accuracy of numerical forecasts has been tremendously improved. Supercomputers are also indispensible in constructing and executing the synthetic Earth system models. In this study, a brief overview on numerical weather / climate prediction, Earth system modeling, and the values of supercomputing is provided.

LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (II) - 정적 오차 해석 - (On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulations (II) - Static Error Analysis -)

  • 박노마;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.984-994
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a spectral, static error analysis. To investigate the effect of numerical dissipation on LES solutions, power spectra of discretization errors are evaluated for isotropic turbulence models in both continuous and discrete wavevector spaces. Contrary to the common belief, the aliasing errors from upwind-biased schemes are larger than those from comparable non-dissipative schemes. However, this result is the direct consequence of the definition of the power spectral density of the aliasing error, which poses the limitation of the static error analysis for upwind schemes.

액체금속로 내부 열유동해석을 위한 대류항처리법 평가 (Evaluation of Convection Schemes for Thermal Hydraulic Analysis in a Liquid Metal Reactor)

  • 최석기;김성오;김의광;어재혁;최훈기
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.64-69
    • /
    • 2002
  • A numerical study has been peformed for evaluation of convection schemes for thermal hydraulic analysis in a liquid metal reactor Four convection schemes, HYBRID, QUICK, SMART and HLPA included in the CFX-4 code are considered. The performances of convection schemes are evaluated by applying them to the five test problems. The accuracy, stability and convergence are tested. It is shown that the HYBRID scheme is too diffusive, and the QUICK scheme exhibits overshoots and undershoots, and the SMART scheme shows convergence oscillations, and the HLPA scheme preserves the boundedness without causing convergence oscillations. The accuracies of SMART, QUICK and HLPA schemes are comparable. Thus, the use of HLPA scheme is highly recommended for thermal hydraulic analysis in a liquid metal reactor.

  • PDF

Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5

  • Hebert, Alain
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1135-1142
    • /
    • 2017
  • The applicability of the algebraic collapsing acceleration (ACA) technique to the method of characteristics (MOC) in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step) sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1) the first category is based on exact integration and leads to the classical step characteristics (SC) and linear discontinuous characteristics (LDC) schemes and (2) the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m)] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D) eight-symmetry pressurized water reactor (PWR) assembly mockup in the context of the DRAGON5 code.