DOI QR코드

DOI QR Code

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulations (II) - Static Error Analysis -

LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (II) - 정적 오차 해석 -

  • 박노마 (서울대학교 기계항공공학부) ;
  • 유정열 (서울대학교 기계항공공학부) ;
  • 최해천 (서울대학교 기계항공공학부)
  • Published : 2003.07.01

Abstract

The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a spectral, static error analysis. To investigate the effect of numerical dissipation on LES solutions, power spectra of discretization errors are evaluated for isotropic turbulence models in both continuous and discrete wavevector spaces. Contrary to the common belief, the aliasing errors from upwind-biased schemes are larger than those from comparable non-dissipative schemes. However, this result is the direct consequence of the definition of the power spectral density of the aliasing error, which poses the limitation of the static error analysis for upwind schemes.

Keywords

References

  1. Breuer, M., 1998, 'Numerical and Modeling Influences on Large Eddy Simulations for the Flow Past a Circular Cylinder,' Int. J. Heat and Fluid Flow, Vol. 19, pp.512-521 https://doi.org/10.1016/S0142-727X(98)10015-2
  2. Garnier. E., Mossi, M., Sagaut, P., Comte, P. and Deville, M., 1999, 'On the Use of Shock-Capturing Schemes for Large-Eddy Simulation,' J. Comput. Phys., Vol. 153, pp. 273-311 https://doi.org/10.1006/jcph.1999.6268
  3. Mossi, M and Sagaut, P., 2003, 'Numerical Investigation of Fully Developed Channel Flow Using Shock-Capturing Schemes,' Computers & Fluids, Vol. 32, pp. 249-274 https://doi.org/10.1016/S0045-7930(02)00003-8
  4. Ladeinde, F., Cai, X., Visbal, M and Gaitonde, D. V., 2001, 'Turbulence Spectra Characteristics of High Order Schemes for Direct and Large Eddy Simulation,' Appl. Numer. Math., Vol. 36, pp. 447-474 https://doi.org/10.1016/S0168-9274(00)00019-2
  5. Meinke, M., Schroder, W., Krause, E. and Rister, Th., 2002, 'A Comparison of Second- and Sixth-order Methods for Large-Eddy Simulations,' Computers & Fluids, Vol. 31, pp. 695-718 https://doi.org/10.1016/S0045-7930(01)00073-1
  6. Park, N., Yoo, J. Y. and Choi, H., 2003, 'On the Suitability of Centered and Upwind-biased Compact Different Schemes for Large Eddy Simulation: Part I-Numerical Test,' Trans. Of the KSME B, Vol. 27, No. 7, pp. 973-983 https://doi.org/10.3795/KSME-B.2003.27.7.973
  7. Vreman, B., Geurts, B. and Kuerten, H., 'Comparison of Numerical Schemes in Large-Eddy Simulation of the Temporal Mixing Layer,' Int. J. Numer. Met. Fluids, Vol. 22, pp. 297-311 https://doi.org/10.1002/(SICI)1097-0363(19960229)22:4<297::AID-FLD361>3.0.CO;2-X
  8. Ghosal, S., 1996, 'An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence,' J. Comput. Phys., Vol. 125, pp. 187-206 https://doi.org/10.1006/jcph.1996.0088
  9. Kravchenko, A. G. and Moin, P., 1997, 'On the Effect of Numerical Errors in Large-Eddy Simulations of Turbulent Flows,' J. Comput. Phys., Vol. 131, pp. 310-322 https://doi.org/10.1006/jcph.1996.5597
  10. Fedioun, I., Lardjane, N. and Gokalp, I., 'Revisiting Numerical Errors in Direct and Large Eddy Simulations of Turbulence: Physical and Spectral Space Analysis,' J. Comput. Phys., Vol. 174, pp.816-851 https://doi.org/10.1006/jcph.2001.6939
  11. Lele, S. K., 1992, 'Compact Finite-Difference Schemes With Spectral-Like Resolution,' J. Comput. Phys., Vol. 103, pp. 16-42 https://doi.org/10.1016/0021-9991(92)90324-R
  12. Zhong, X., 1998, https://doi.org/10.1006/jcph.1998.6010
  13. Tolstykh, A. I. and Lipavskii, M. V., 1998, 'On Performance of Methods with Third- and Fifth-Order Compact Upwind Differencing,' J. Comput. Phys., Vol. 140, pp. 205-232 https://doi.org/10.1006/jcph.1998.5887
  14. Lesieur, M., 1987, Turbulence in Fluids, Kluwer Academics, Dordrecht
  15. Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag Berlin Heidelberg
  16. Carati, D., Jansen, K. and Lund, T., 1995, 'A Family of Dynamic Models for Large-Eddy Simulation,' Annual Research Briefs, Center for Turbulence Research
  17. Domaradzki, J. A. and Loh, K. C., 1999, 'The Subgrid-Scale Estimation Model in the Physical Space Respresentation,' Phys. Fluids, Vol. 11, pp. 2330-2342 https://doi.org/10.1063/1.870095
  18. Germano, M., Piomelli, U., Moin, P. and Cabot, W., 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model,' Phys. Fluids A, Vol. 3, pp. 1760-1765 https://doi.org/10.1063/1.857955
  19. Lilly, D, 1992, 'A Proposed Modification of the Germano Subgrid Scale Closure Method,' Phys. Fluids A, Vol.4, pp. 633-634 https://doi.org/10.1063/1.858280
  20. Clark, R. G., Ferziger, J. H., and Reynolds, W. C., 1979, 'Evaluation of Subgrid Models Using an Accurately Simulated Turbulent Flow,' J. Fluid Mech., Vol. 91, pp. 1-16 https://doi.org/10.1017/S002211207900001X
  21. Liu, S., Meneveau, C., and Katz, J., 1994, 'On the Properties of Similarity Subgrid-Scale Models as Deduced from Measurements in a Turbulent Jet,' J. Fluid Mech., Vol. 275, pp. 83-119 https://doi.org/10.1017/S0022112094002296
  22. Kang, H. S., Chester, S., and ;Meneveau, C., 2002, 'Decaying Turbulence in an Active-Grid-Generated Flow and Comparisons with Large-Eddy Simulation,' J. Fluid Mech., in press https://doi.org/10.1017/S0022112002003579
  23. Park, N., Yoo, J. Y. and Choi, H., 2003, 'On the Suitability of Centered and Upwind-biased Compact Different Schemes for Large Eddy Simulation: Part III - Dynamic Error Analysis,' Trans. Of the KSME B, Vol. 27, NO. 7, pp. 995-1006 https://doi.org/10.3795/KSME-B.2003.27.7.995
  24. Zang, T. A., 1991, 'On the Rotation and SkewSymmetric Forms for Incompressible Flow Simulations,' Appl. Numer. Math., Vol. 7, pp. 27-40 https://doi.org/10.1016/0168-9274(91)90102-6
  25. Blaisdell, G. A., Spyropoulus, E. T. and Qin, J. H., 1996, 'The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods,' Appl. Numer. Math., Vol. 21, pp. 207-219 https://doi.org/10.1016/0168-9274(96)00005-0
  26. Appl. Numer. Math. v.21 The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods Blaisdell,G.A.;Spyropoulus,E.T.;Qin,J.H. https://doi.org/10.1016/0168-9274(96)00005-0