• Title/Summary/Keyword: Numerical models

Search Result 4,293, Processing Time 0.031 seconds

Numerical Study on $\kappa-\omega$ Turbulence Models for Supersonic Impinging Jet Flow Field (초음속 충돌 제트 유동에 대한 $\kappa-\omega$ 난류모델의 적용)

  • Kim E.;Park S. H.;Kwon J. H.;Kim S. I.;Park S. O.;Lee K. S.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.139-145
    • /
    • 2004
  • A numerical study of underexpanded jet and impingement on a wall mounted at various distances from the nozzle exit is presented. The 3-dimensional Navier-Stokes equations and $\kappa-\omega$ turbulence equations are solved. The grids are constructed as overlapped grid systems to examine the distance effect. The DADI method is applied to obtain steady-state solutions. To avoid numerical instability such as the carbuncle that sometimes accompany approximate Riemann solver, the HLLE+ scheme is employed for the inviscid flux at the cell interfaces. A goal of this work is to apply a number of two-equation turbulence models based on the $\omega$ equation to the impinging jet problem.

  • PDF

An Approximate Analysis of a Stochastic Fluid Flow Model Applied to an ATM Multiplexer (ATM 다중화 장치에 적용된 추계적 유체흐름 모형의 근사분석)

  • 윤영하;홍정식;홍정완;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.97-109
    • /
    • 1998
  • In this paper, we propose a new approach to solve stochastic fluid flow models applied to the analysis of ceil loss of an ATM multiplexer. Existing stochastic fluid flow models have been analyzed by using linear differential equations. In case of large state space, however. analyzing stochastic fluid flow model without numerical errors is not easy. To avoid this numerical errors and to analyze stochastic fluid flow model with large state space. we develope a new computational algorithm. Instead of solving differential equations directly, this approach uses iterative and numerical method without calculating eigenvalues. eigenvectors and boundary coefficients. As a result, approximate solutions and upper and lower bounds are obtained. This approach can be applied to stochastic fluid flow model having general Markov chain structure as well as to the superposition of heterogeneous ON-OFF sources it can be extended to Markov process having non-exponential sojourn times.

  • PDF

Numerical Study on the Joints between Precast Post-Tensioned Segments

  • Kim, Tae-Hoon;Kim, Young-Jin;Jin, Byeong-Moo;Shin, Hyun-Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.3-9
    • /
    • 2007
  • This paper presents a numerical procedure for analyzing the joints between precast post-tensioned segments. A computer program for the analysis of reinforced concrete structures was run for this problem. Models of material nonlinearity considered in this study include tensile, compressive and shear models for cracked concrete and a model for reinforcing steel with smeared crack. An unbonded tendon element based on the finite element method, that can describe the interaction between the tendon and concrete of prestressed concrete member, was experimentally investigated. A joint element is newly developed to predict the inelastic behavior of the joints between segmental members. The proposed numerical method for the joints between precast post-tensioned segments was verified by comparison of its results with reliable experimental results.

Numerical simulation of shaking table tests on 3D reinforced concrete structures

  • Bayhan, Beyhan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.151-171
    • /
    • 2013
  • The current paper presents the numerical blind prediction of nonlinear seismic response of two full-scale, three dimensional, one-story reinforced concrete structures subjected to bidirectional earthquake simulations on shaking table. Simulations were carried out at the laboratories of LNEC (Laboratorio Nacional de Engenharia Civil) in Lisbon, Portugal. The study was motivated by participation in the blind prediction contest of shaking table tests, organized by the challenge committee of the 15th World Conference on Earthquake Engineering. The test specimens, geometrically identical, designed for low and high ductility levels, were subjected to subsequent earthquake motions of increasing intensity. Three dimensional nonlinear analytical models were implemented and subjected to the input base motions. Reasonably accurate reproduction of the measured displacement response was obtained through appropriate modeling. The goodness of fit between analytical and measured results depended on the details of the analytical models.

Analysis of Flow and Performance of Regulator for Clean Gas Supply System (가스 조절용 레귤레이터의 유동 및 성능해석)

  • Kim, M.K.;Lee, Y.S.;Choi, W.J.;Kwon, O.B.;Park, J.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF

Moments calculation for truncated multivariate normal in nonlinear generalized mixed models

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.377-383
    • /
    • 2020
  • The likelihood-based inference in a nonlinear generalized mixed model often requires computing moments of truncated multivariate normal random variables. Many methods have been proposed for the computation using a recurrence relation or the moment generating function; however, these methods rely on high dimensional numerical integrations. The numerical method is known to be inefficient for high dimensional integral in accuracy. Besides the accuracy, the methods demand too much computing time to use them in practical analyses. In this note, a moment calculation method is proposed under an assumption of a certain covariance structure that occurred mostly in generalized mixed models. The method needs only low dimensional numerical integrations.

Numerical simulation of the effect of missile impact on the concrete layers

  • Sarfarazi, Vahab;Abad, Shadman M. Bolban
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.377-384
    • /
    • 2020
  • A two-dimensional particle flow cod (PFC) is used to study the effect of missile impact on the concrete target. For this purpose firstly calibration of numerical model was performed so that tensile strength of numerical models and experimental sample were the same. Secondly, a concrete model was built. The number of concrete layers and the angle of concrete layers related to horizontal axis were changed. Their numbers were 1, 2, 3 and 4. The angles were 0°, 15°, 30°, 45°, 60°, 75° and 90°. A semi-circle missile was simulated at top of the concrete layers. Its velocity in opposite side of Y direction was 100 m/s. three measuring circles were situated at the below the missile in the model to receive the applied force. The load in the missile and measuring circles together with failure pattern were registered at the beginning of the impaction. The results show that concrete layers number and concrete layers angle have important effect on the failure load while the failure pattern was nearly constant in all of the models.

Numerical simulation of bubble growth and liquid flow in a bubble jet micro actuator

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1232-1236
    • /
    • 2014
  • Numerical models of fluid dynamics inside the micro actuator chamber and nozzle are presented. The models include ink flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill process. Since high tapered nozzle is one of the very important parameters for overall actuator performance design. The effects of variations of nozzle thickness, diameter, and taper angles are simulated and some results are compared with the experimental results. It is found that the ink droplet ejection through the thinner and high tapered nozzle is more steady, fast, and robust.

Numerical Simulation of Cosmic-Ray Acceleration

  • JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.231-235
    • /
    • 2001
  • Cosmic-ray acceleration, although physically important in many astrophysical contexts, is difficult to incorporate into numerical models,. because it involves microphysics that is generally far from thermodynamic equilibrium, and also because the length and time scales for that physics typically range over many orders of magnitude, reflecting the huge range of particle rigidities that must be represented. The most common accelerator models are stochastic in nature and involve nonequilibrium plasma properties that are also often poorly understood. Still, nature clearly finds a way to produce simple, robust and almost scale-free energy distributions for the cosmic-rays. Their importance has inspired a number of approaches to examining the production and transport of cosmic-ray particles in numerical simulations. I offer here a brief comparison of some of the methods that have been introduced.

  • PDF

A Study on the Flow Characteristics of Piezoelectric Micropumps with Different Numerical Models (수치 모델에 따른 압전 구동방식 마이크로 펌프의 유동특성에 관한 연구)

  • Jung, Jin;Kim, Dong-Hee;Kim, Chang-Nyeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.707-713
    • /
    • 2004
  • A numerical analysis has been conducted for flow characteristics of piezoelectric micropumps. In the present study, FSI (Fluid-Structure Interaction) model and grid deform model have been employed for each of two different geometries of the micropumps with two different frequencies in the piezoelectric diffuser/nozzle based micropumps. The displacement of piezo disk and flow rates have been closely examined at the inlet and outlet. It has been found that the motion of the piezo disk investigated with FSI model is not in accordance with that with grid deform model. The results show that the time averaged flow rate calculated with FSI model is larger than that with grid deform model. This study presents the performance analysis of piezoelectric micropumps with two different numerical models for different types of pumps.