• 제목/요약/키워드: Numerical laboratory

검색결과 2,138건 처리시간 0.033초

시험 장비의 용량제한을 고려한 무고장 신뢰성 시험의 경제적 설계 (Economic Design of A Zero-Failure Reliability Demonstration Test Considering Capacity Limitation of Test Equipment)

  • 한숙현;윤원영;서순근
    • 품질경영학회지
    • /
    • 제49권3호
    • /
    • pp.341-358
    • /
    • 2021
  • Purpose: After product development, a Reliability Demonstration Test(RDT) is performed to confirm that the target life has been achieved. In the RDT, there are cases where the test equipment cannot accommodate all samples. Therefore, this study considers a test method to most economically demonstrate the target life of the product at a certain confidence level when the sample size is larger than the capacity of the test equipment. Methods: If the sample size is larger than the capacity of the test equipment, test equipments may be added or the test time of individual samples may be increased. So the test method is designed to cover this situation with limited capacity. A zero-failure test method is applied as a test method to RDT. To minimize the cost, the test cost is defined and the cost function is obtained. Finally, we obtain the optimal test plan. Results: A zero-failure test method is designed when the sample size is larger than the capacity of the test equipment, and the expected total cost is derived. In addition, the process of calculating the appropriate sample size, test time, and number of test equipment is illustrated through an example, and the effects of model parameters to the optimal solutions are investigated numerically. Conclusion: In this paper, we study a zero-failure RDT with test equipment that has limited capacity. The expected total cost is derived and the optimal sample size, test time, and number of test equipment are determined to minimize the expected total cost. We also studied numerical examples and for further studies, we can relax some restrictions in the test model and optimize the test method.

위성영상 기반 일사량을 활용한 대전지역 표준기상년 데이터 생산 (Derivation of Typical Meteorological Year of Daejeon from Satellite-Based Solar Irradiance)

  • 김창기;김신영;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제38권6호
    • /
    • pp.27-36
    • /
    • 2018
  • Typical Meteorological Year Dataset is necessary for the renewable energy feasibility study. Since National Renewable Energy Laboratory has been built Typical Meteorological Year Dataset in 1978, gridded datasets taken from numerical weather prediction or satellite imagery are employed to produce Typical Meteorological Year Dataset. In general, Typical Meteorological Year Dataset is generated by using long-term in-situ observations. However, solar insolation is not usually measured at synoptic observing stations and therefore it is limited to build the Typical Meteorological Year Dataset with only in-situ observation. This study attempts to build the Typical Meteorological Year Dataset with satellite derived solar insolation as an alternative and then we evaluate the Typical Meteorological Year Dataset made by using satellite derived solar irradiance at Daejeon ground station. The solar irradiance is underestimated when satellite imagery is employed.

FDS를 이용한 실규모 공연장 무대 내 화재 시 연기 거동 분석: 방화막 및 자연배출구 면적의 영향 (Analysis of Smoke Behavior in Fire within Real-scale Theater Using FDS: Influences of Fire Curtain and Natural Smoke Vent Area)

  • 김재한;이치영;정이규;김동균
    • 한국화재소방학회논문지
    • /
    • 제32권6호
    • /
    • pp.7-14
    • /
    • 2018
  • 본 연구에서는 방화막 및 자연배출구 면적이 공연장 무대 화재 시 연기 거동에 미치는 영향에 대해 Fire Dynamics Simulator (FDS)를 이용하여 전산시뮬레이션(Numerical simulation)을 수행하였다. 공연장의 무대 크기는 폭 31 m, 깊이 34 m, 높이 32 m로 설정하였고, 자연배출구 면적은 무대 바닥면적의 약 10%, 약 8%, 약 5%, 약 1%로 하였다. 방화막은 프로시니엄(Proscenium) 벽과 0.5 m 이격하여 설정하였다. 방화막과 자연배출구 면적은 객석으로의 연기유출, 자연배출구 및 프로시니엄 개구부를 통한 유입 및 유출 질량 유량에 지대한 영향을 미치는 것으로 관찰되었고, 동일한 자연배출구 면적 조건에서 방화막이 설치된 경우가 미설치된 경우에 비해 무대 내 압력이 더 낮은 것으로 나타났다.

Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings

  • Zheng, Yue;Dong, You;Chen, Bo;Anwar, Ghazanfar Ali
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.127-139
    • /
    • 2019
  • Residual drifts after an earthquake can incur huge repair costs and might need to replace the infrastructure because of its non-reparability. Proper functioning of bridges is also essential in the aftermath of an earthquake. In order to mitigate pounding and unseating damage of bridges subjected to earthquakes, a self-adaptive Ni-Ti shape memory alloy (SMA)-cable-based frictional sliding bearing (SMAFSB) is proposed considering self-adaptive centering, high energy dissipation, better fatigue, and corrosion resistance from SMA-cable component. The developed novel bearing is associated with the properties of modularity, replaceability, and earthquake isolation capacity, which could reduce the repair time and increase the resilience of highway bridges. To evaluate the super-elasticity of the SMA-cable, pseudo-static tests and numerical simulation on the SMA-cable specimens with a diameter of 7 mm are conducted and one dimensional (1D) constitutive hysteretic model of the SMAFSB is developed considering the effects of gap, self-centering, and high energy dissipation. Two types of the SMAFSB (i.e., movable and fixed SMAFSBs) are applied to a two-span continuous reinforced concrete (RC) bridge. The seismic vulnerabilities of the RC bridge, utilizing movable SMAFSB with the constant gap size of 60 mm and the fixed SMAFSBs with different gap sizes (e.g., 0, 30, and 60 mm), are assessed at component and system levels, respectively. It can be observed that the fixed SMAFSB with a gap of 30 mm gained the most retrofitting effect among the three cases.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.

위성 탑재용 천문력 생성 프로그램 개발 (Development of Planetary Ephemeris Generation Program for Satellite)

  • 이광현;조동현;김해동
    • 한국항공우주학회지
    • /
    • 제47권3호
    • /
    • pp.220-227
    • /
    • 2019
  • 궤도상에 있는 인공위성은 천문력 기반 태양 모델을 사용하여 기준 벡터를 형성한다. 이를 위해 제트 추진 연구소(JPL)에서 개발한 천문력인 DE-Series, 또는 Vallado가 제안한 기준 벡터 생성식을 사용한다. DE-Series는 체비셰프 다항식의 수치 계수를 제공하는데 정밀도가 높다는 장점이 있지만 인공위성의 탑재 컴퓨터의 계산 부담이 있으며, Vallado 방식은 생성식을 통해 태양 벡터를 간단히 구할 수 있지만 낮은 정밀도를 제공한다. 본 논문에서는 DE-Series를 통해 얻은 태양의 위치를 체비셰프 다항식으로 Curve fitting하여, 관성좌표계에서의 태양 위치좌표를 구할 수 있는 체비셰프 다항식 계수를 제공하는 프로그램을 개발하였다. 기존 방식에 비해 정밀도를 향상시킬 수 있었으며, 제안된 방법은 고성능, 고정밀 초소형위성 임무에 활용될 수 있다.

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.