• Title/Summary/Keyword: Numerical forecast model

검색결과 181건 처리시간 0.027초

대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향 (Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS))

  • 김소영;전혜영;박병권;이해진
    • 대기
    • /
    • 제16권4호
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선 (The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm)

  • 남현;최석진
    • 대기
    • /
    • 제33권4호
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

DNN을 활용한 부산지역 초미세먼지 예보방안 (A Study on the PM2.5 forcasting Method in Busan Using Deep Neural Network )

  • 도우곤;김동영;송희진;조갑제
    • 한국환경과학회지
    • /
    • 제32권8호
    • /
    • pp.595-611
    • /
    • 2023
  • The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.

대한해협에서 표층 뜰개 이동 예측 연구 (A Study on the Prediction of the Surface Drifter Trajectories in the Korean Strait)

  • 하승윤;윤한삼;김영택
    • 한국해안·해양공학회논문집
    • /
    • 제34권1호
    • /
    • pp.11-18
    • /
    • 2022
  • 본 연구는 대한해협 인근 입자추적 예측 기법의 정확도 개선을 위해서 해수유동 수치모델 결과를 이용하여 만든 입자추적 모델과 현장 관측 자료를 이용한 기계학습 기반 입자 추적 모델을 비교 및 분석하였다. 세부 연구 방법으로는 대한해협에서 관측된 표층 뜰개 이동 궤적 자료, 3개 관측소(가거도, 거제도, 교본초 관측소)의 조위 및 바람자료를 학습시켜 만든 기계 학습(선형 회귀, 의사결정나무) 기반 예측자료, 수치모델 예측자료(ROMS, MOHID)를 3가지 오차평가방법(CC, RMSE, NCLS)을 통해 비교하였다. 최종 결과로서 CC와 RMSE에서는 의사결정나무 모델의 예측 정확도가 가장 우수하였고 NCLS에서는 MOHID 모델의 예측 결과가 가장 우수하였다.

고해상도 기후예측시스템의 표층해류 예측성능 평가 (Assessment of Ocean Surface Current Forecasts from High Resolution Global Seasonal Forecast System version 5)

  • 이효미;장필훈;강기룡;강현석;김윤재
    • Ocean and Polar Research
    • /
    • 제40권3호
    • /
    • pp.99-114
    • /
    • 2018
  • In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.

기상청 계절예측시스템(GloSea5)의 해양성층 강화시기 단기 해양예측 정확도 및 대기-해양 접합효과 (Accuracy of Short-Term Ocean Prediction and the Effect of Atmosphere-Ocean Coupling on KMA Global Seasonal Forecast System (GloSea5) During the Development of Ocean Stratification)

  • 정영윤;문일주;장필훈
    • 대기
    • /
    • 제26권4호
    • /
    • pp.599-615
    • /
    • 2016
  • This study investigates the accuracy of short-term ocean predictions during the development of ocean stratification for the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 5 (GloSea5) as well as the effect of atmosphere-ocean coupling on the predictions through a series of sensitive numerical experiments. Model performance is evaluated using the marine meteorological buoys at seas around the Korean peninsular (KP), Tropical Atmosphere Ocean project (TAO) buoys over the tropical Pacific ocean, and ARGO floats data over the western North Pacific for boreal winter (February) and spring (May). Sensitive experiments are conducted using an ocean-atmosphere coupled model (i.e., GloSea5) and an uncoupled ocean model (Nucleus for European Modelling of the Ocean, NEMO) and their results are compared. The verification results revealed an overall good performance for the SST predictions over the tropical Pacific ocean and near the Korean marginal seas, in which the Root Mean Square Errors (RMSE) were $0.31{\sim}0.45^{\circ}C$ and $0.74{\sim}1.11^{\circ}C$ respectively, except oceanic front regions with large spatial and temporal SST variations (the maximum error reached up to $3^{\circ}C$). The sensitive numerical experiments showed that GloSea5 outperformed NEMO over the tropical Pacific in terms of bias and RMSE analysis, while NEMO outperformed GloSea5 near the KP regions. These results suggest that the atmosphere-ocean coupling substantially influences the short-term ocean forecast over the tropical Pacific, while other factors such as atmospheric forcing and the accuracy of simulated local current are more important than the coupling effect for the KP regions being far from tropics during the development of ocean stratification.

부산 연안역에서의 국지풍모델을 이용한 이류확산 수치모의 (Numerical Simulation of Advection and Diffusion using the Local Wind Model in Pusan Coastal Area, Korea)

  • 김유근;이화운;전병일
    • 한국대기환경학회지
    • /
    • 제12권1호
    • /
    • pp.29-41
    • /
    • 1996
  • The two-stage numerical model was used to study the relation between three-dimensional local wind model, advection/diffusion model of random walk method and second moment method on Pusan coastal area. The first stage is three dimensional time-dependent local wind model which gives the wind field and vertical dirrusion coefficient. The second stage is advection/diffusion model which uses the results of the first stage as input data. First, wind fields on Pusan coastal area for none synoptic scale wind showed typical land and sea breeze circulation, and convergence zone occured at 1200LST in northern of domain, in succession, moved northward of domain. Emissions from Sinpyeong industrial district were trasnported toward the inland by sea breeze during daytime, and reached the end part of domain about 1800LST. During nighttime, emissions return to sea by land breeze and vertical diffusion also contributes to upward transport. In order to use this model for forecast of air pollution concentration on the Pusan coastal area, it is necessary that computed value must be compared with measured value and wind fields model must also be dealt in detail.

  • PDF

한반도에 발생한 위험 기상 사례에 대한 관측 민감도 분석 (Forecast Sensitivity to Observations for High-Impact Weather Events in the Korean Peninsula)

  • 김세현;김현미;김은정;신현철
    • 대기
    • /
    • 제23권2호
    • /
    • pp.171-186
    • /
    • 2013
  • Recently, the number of observations used in a data assimilation system is increasing due to the enormous amount of observations, including satellite data. However, it is not clear that all of these observations are always beneficial to the performance of the numerical weather prediction (NWP). Therefore, it is important to evaluate the effect of observations on these forecasts so that the observations can be used more usefully in NWP process. In this study, the adjoint-based Forecast Sensitivity to Observation (FSO) method with the KMA Unified Model (UM) is applied to two high-impact weather events which occurred in summer and winter in Korea in an effort to investigate the effects of observations on the forecasts of these events. The total dry energy norm is used as a response function to calculate the adjoint sensitivity. For the summer case, TEMP observations have the greatest total impact while BOGUS shows the greatest impact per observation for all of the 24-, 36-, and 48-hour forecasts. For the winter case, aircraft, ATOVS, and ESA have the greatest total impact for the 24-, 36-, and 48-hour forecasts respectively, while ESA has the greatest impact per observation. Most of the observation effects are horizontally located upwind or in the vicinity of the Korean peninsula. The fraction of beneficial observations is less than 50%, which is less than the results in previous studies. As an additional experiment, the total moist energy norm is used as a response function to measure the sensitivity of 24-hour forecast error to observations. The characteristics of the observation impact with the moist energy response function are generally similar to those with the dry energy response function. However, the ATOVS observations were found to be sensitive to the response function, showing a positive (a negative) effect on the forecast when using the dry (moist) norm for the summer case. For the winter case, the dry and moist energy norm experiments show very similar results because the adjoint of KMA UM does not calculate the specific humidity of ice properly such that the dry and moist energy norms are very similar except for the humidity in air that is very low in winter.

중규모 수치예측 모델을 이용한 한반도 시일링 예보 및 현업 운영 개선에 관한 연구 (A Study on the Operational Ceiling Forecasting and its Improvement Using a Mesoscale Numerical Prediction Model over the Korean Peninsula)

  • 이승재;김영철
    • 한국항공운항학회지
    • /
    • 제19권1호
    • /
    • pp.24-28
    • /
    • 2011
  • This paper reviews a ceiling prediction method based on a mesoscale meteorological modeling system in South Korea. The study was motivated by the tendency of higher model ceiling height than the observed in daily operational forecasts. The goal of the paper is to report an effort to improve the operational ceiling prediction skill by conducting numerical experiments controlling a model parameter. In a case experiment, increasing constant values used in the relationship between extinction coefficients and concentration showed better performance, indicating a short-term strategy for operational local ceiling forecast improvement.

댐의 파괴형태와 하도부 양상에 따른 홍수파의 전달특성 해석에 관한 연구 - 급격한 댐 파괴와 마른하도를 중심으로 - (Numerical Simulation of the Floodwave Analysis Resulting from Dam Failure - Flood on Dry Bed from Instantaneous Dam-Break-)

  • 한건윤
    • 물과 미래
    • /
    • 제23권4호
    • /
    • pp.467-476
    • /
    • 1990
  • 급격한 댐 파괴로 인한 홍수파가 마른하도 상에 전파되어 나가는 현상을 정파와 부파의 선단부의 이동을 추적하는 Hartree이동기법에 의하여 해석하였다. 본 연구에서 개발한 모형을 WES의 실험조건에 적용한 결과, 댐 상하류부 수개 지점에서의 수문곡선의 형상과 특성선의 전파양상에 있어 실측치와 계산치가 잘 일치되고 있었다. 본 연구에서의 해석기법은 마른 하도상에 전파되는 각종 홍수파 해석에 효과적으로 응용될 수 있을 것으로 판단되었다.

  • PDF