• Title/Summary/Keyword: Numerical forecast model

Search Result 181, Processing Time 0.029 seconds

Improvement of precipitation ensemble forecast by blending radar and numerical model based precipitation (레이더 강수량 및 수치예보 자료를 활용한 앙상블 강우예측정보 개선 방안)

  • Urnachimeg, Sumiya;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.60-60
    • /
    • 2020
  • 기후변화 및 지구온난화로 인한 자연재해 규모가 점차 대형화, 다양화되고 있어 이로 인한 피해도 증대되고 있다. 특히, 다양한 시설과 인구밀도가 높은 도심 지역은 집중호우, 태풍, 홍수 등 자연재해에 취약하여 인적·물적 피해 위험성이 매우 높다. 방재 시설확보 및 개선을 통한 더 높은 안정성 및 기상예보를 통한 대응, 대책을 통한 피해 저감이 이루어지고 있다. 그러나 일반적으로 제공되는 단일 수치모형 기반의 결정론적 기상예측정보는 기상 상태, 선행시간, 모형 매개변수 등으로 인한 불확실성이 매우 크며 이에 대한 정보가 제공되지 않다. 이러한 문제점을 보완하기 위해 앙상블 수치모델 정보와 기상레이더 자료 기반의 단기 예측정보가 활용이 가능하다. 그러나, 앙상블 수치모델의 불확실성, 기상레이더 기반 예측정보의 짧은 예측 선행시간으로 인해 수문학적 모형에 입력자료로 활용은 어려운 실점이다. 본 연구에서는 지점 관측자료의 시간적 연속성, 기상레이더 자료의 공간적 연속성, 앙상블 예측정보의 선행시간 정보를 융합하여 기상예측정보에 대한 불확실성 개선 및 선행시간에 따른 정확도를 높일 방법을 제안하였다. 기상청에서 제공하는 앙상블 예측자료인 LENS 자료, 레이더 강수량, ASOS 관측자료 기반으로 분석이 수행되었으며 분석결과는 예측강수량을 활용하는 분야에 긍정적 영향을 미칠 것으로 기대된다.

  • PDF

Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models (자기회귀 모델과 신경망 모델을 이용한 복잡한 지형 내 항만에서의 파고 및 하역중단 예측)

  • Yi, Jin-Hak;Ryu, Kyong-Ho;Baek, Won-Dae;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.180-188
    • /
    • 2017
  • Recently, as the strength of winds and waves increases due to the climate change, abnormal waves such as swells have been also increased, which results in the increase of downtime events of loading/unloading in a harbour. To reduce the downtime events, breakwaters were constructed in a harbour to improve the tranquility. However, it is also important and useful for efficient port operation by predicting accurately and also quickly the downtime events when the harbour operation is in a limiting condition. In this study, numerical simulations were carried out to calculate the wave conditions based on the forecasted wind data in offshore area/outside harbour and also the long-term observation was carried out to obtain the wave data in a harbour. A forecasting method was designed using an auto-regressive (AR) and artificial neural networks (ANN) models in order to establish the relationship between the wave conditions calculated by wave model (SWAN) in offshore area and observed ones in a harbour. To evaluate the applicability of the proposed method, this method was applied to predict wave heights in a harbour and to forecast the downtime events in Pohang New Harbour with highly complex topography were compared. From the verification study, it was observed that the ANN model was more accurate than the AR model.

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Predicting the hazard area of the volcanic ash caused by Mt. Ontake Eruption (일본 온타케 화산분화에 따른 화산재 확산 피해범위 예측)

  • Lee, Seul-Ki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.777-786
    • /
    • 2014
  • Mt. Ontake is the second highest volcano in Japan. On 02:52 Universal Time Coordinated(UTC), 27th September 2014, Ontake volcano began on the large eruption without notice. Due to the recent eruption, 55 people were killed and around 70 people injured. Therefore, This paper performed numerical experiment to analyse damage effect of volcanic ash corresponding to Ontake volcano erupt. The forecast is based on the outputs of the HYSPLIT Model for volcanic ash. This model, which is based on the UM numerical weather prediction data. Also, a quantitative analysis of the ash dispersion area, it has been detected using satellite images from optical Communication, Ocean and Meterological Satellite-Geostationary Ocean Color Imager (COMS-GOCI) images. Then, the GOCI detected area and simulated ash dispersion area were compared and verified. As the result, the similarity showed the satisfactory result between the detected and simulated area. The concordance ratio between the numerical simulation results and the GOCI images was 38.72 % and 13.57 %, Also, the concordance ratio between the JMA results and the GOCI images was 9.05 % and 11.81 %. When the volcano eruptions, volcanic ash range of damages are wide more than other volcanic materials. Therefore, predicting ash dispersion studies are one of main way to reduce damages.

Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu (백두산 화산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향)

  • Lee, Soon-Hwan;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.360-372
    • /
    • 2011
  • In order to clarify the advection and dispersion characteristics of volcanic tephra to be emitted from the Mt. Baekdu, several numerical experiments were carried out using three-dimensional atmospheric dynamic model, Weather and Research Forecast (WRF) and Laglangian particles dispersion model FLEXPART. Four different temporally averaged meteorological values including wind speed and direction were used, and their averaged intervals of meteorological values are 1 month, 10 days, and 3days, respectively. Real time simulation without temporal averaging is also established in this study. As averaging time of meteorological elements is longer, wind along the principle direction is stronger. On the other hands, the tangential direction wind tends to be clearer when the time become shorten. Similar tendency was shown in the distribution of volcanic tephra because the dispersion of particles floating in the atmosphere is strongly associated with wind pattern. Wind transporting the volcanic tephra is divided clearly into upper and lower region and almost ash arriving the Korean Peninsula is released under 2 km high above the ground. Since setting up the temporal averaging of meteorological values is one of the critical factors to determine the density of tephra in the air and their surface deposition, reasonable time for averaging meteorological values should be established before the numerical dispersion assessment of volcanic tephra.

An Analytical Study on Prediction Fire Resistance of CFT Column in ISO Fire (표준화재조건 CFT기둥 내화성능예측을 위한 해석적 연구)

  • Kim, Hyung-Jun;Kim, Heun-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.257-260
    • /
    • 2008
  • The heat resistance of steel materials tends to weaken due to its high heat transfer properties, which might result in deteriorated strength because of rapidly rising temperature on surface in a fire. Particularly in case of CFT column that bears tensile stress of the structure on its external steel members, a numerical analysis on deterioration of strength and variation of stress shall be first carried out to ensure the structure will have sufficient fire resistance. In the study, based on values obtained from the high temperature material property test of steel materials and concrete, the test to forecast the fire behavior of CFT column was conducted using a finite element analysis method (ABAQUS). An Analysis in a bid to predict the heat transfer and the behavior characteristics by varying the strength of the concrete filled to the range of 40MPA and 50MPA was carried out. As a result of analysis of CFT column on condition of 180-minute exposure under the standard fire condition, 123mm of strain appeared with 40MPA model, while 91mm contraction with 50MPA model.

  • PDF

Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea (우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발)

  • Lee, Yeon-Chan;Lim, Jin-Taek;Oh, Ung-Jin;N.Do, Duy-Phuong;Choi, Jae-Seok;Kim, Jin-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

GP-GPU based Parallelization for Urban Terrain Atmospheric Model CFD_NIMR (도시기상모델 CFD_NIMR의 GP-GPU 실행을 위한 병렬 프로그램의 구현)

  • Kim, Youngtae;Park, Hyeja;Choi, Young-Jeen
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • In this paper, we implemented a CUDA Fortran parallel program to run the CFD_NIMR model on GP-GPU's, which simulates air diffusion on urban terrains. A GP-GPU is graphic processing unit in the form of a PCI card, and a general calculation accelerator to perform a large amount of high speed calculations with low cost and electric power. The GP-GPU gives performance enhancement of speed by 15 times to compare the Nvidia Tesla C1060 GPU with Intel XEON 2.0 GHz CPU. In addition, the program on a GP-GPU shows efficient performance compared to an MPI parallel program on multiple CPU's. It is expected that a proposed programming method on the GP-GPU parallel program can be used for numerical models with a similar structure.

An Experimental Study of Sediment Transport Patterns behind Offshore Structure (외해 구조물 배후의 표사이동에 관한 실험적 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.207-215
    • /
    • 2004
  • Recently, securing a vast land in the land region becomes more difficult and efforts to seek its alternation in the sea area have been increased. As a consequence, the coastal region has been faced to extensive beach erosion problems. In planning offshore structures such as artificial islands, it is necessary to forecast the influence of the structure construction exerting on the beach erosion of the adjacent coast. In the present study, the sediment movement pattern behind offshore structure was examined through a series of three dimensional movable bed experiments, so as to develop the numerical model which forecasts morphological change including beach erosions. The experimental results reveal that the sediment movement patterns of the beach line side and the depth region are separated at a certain boundary line. In details, at the beach side including swash zone the sediment movement becomes dominant, which is governed by a relation between depth contours and incident wave directions, while at the depth region the bed load and suspended load due to the orbit motion of waves are carried by nearshore currents, and both movements are clearly separated at a specified boundary that is related to partial standing wave from the beach. It is expected that these results can be effectively used for verification of a numerical model on morphological change of the coast.

  • PDF