• 제목/요약/키워드: Numerical flow visualization

검색결과 274건 처리시간 0.025초

마이크로 유체 원심분리기의 입구 조건과 챔버 크기에 따른 회전 유동 성능 평가 (Performance Evaluation of Rotational Flow of a 2×2 Microfluidic Centrifuge with varying Inlet Conditions and Chamber Sizes)

  • 전형진;권봉현;김대일;김형훈;고정상
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.43-48
    • /
    • 2014
  • This paper describes the measurement of performance evaluation of rotational flow varying chamber size and Reynolds number. Through the experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a chamber width of 250${\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a chamber width of 500 ${\mu}m$, single flow rotation did not appear. For performance evaluation, the intensity in microchamber was measured during 20 sec. At a chamber width of 250 ${\mu}m$, performance of rotational flow increased as Reynolds number increased. However, the variation of intensity in microchamber remained unchanged at a chamber width of 500 ${\mu}m$. The numerical analysis showed that the threshold centrifugal acceleration to obtain rotational flow for ejected particles was 200g.

교류 전기삼투유동 - 근본 메커니즘과 운동학적 양상 (AC-Electroosmotic Flows-Fundamental Mechanism and Kinematic Aspects)

  • 서용권
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.3-16
    • /
    • 2008
  • Controlling fluid flows in micro scales is a non-trivial issue among those who are involved in designing lab-on-chips. Pumping and mixing by using electrokinetic principles has been popular in that the method requires a few parts and it is easy to control. This paper explains the basic mechanism of the electroosmotic flows caused by AC together with presenting some numerical results. In particular, the fundamental, physical idea involved in the mechanism will be illustrated in terms of the kinematic aspect. Since the electroosmotic flows are mainly driven by the motion of ions, we also demonstrate the ion motions by using the numerical-visualization method.

고속탄자 유동의 가시화 실험 및 비정렬격자 계산 (Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

와사법을 이용한 타원판 후류의 전산 가시화 (Numerical Visualization of Three-Dimensional Flow Past an Elliptic Disk using Vortex Filament Method)

  • 안철오;이상환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2002
  • A study of three-dimensional unsteady incompressible flow past elliptic disk with aspect ratio 3 is presented. Numerical visualization using the vortex filament method was performed at Reynolds number of 20,000 on the basis of the minor diameter, the random walk method was used to calculate viscous diffusion effect. We suggest 3 stages about the wake development according to its structures, stability and motions and described the characteristics of each stages. The structure of the elliptic wake is more complicate and unstable than the wake behind a circular disk.

  • PDF

마이크로 채널 내 국소적 전위 인가에 따른 전기삼투 유동 및 혼합 특성에 대한 수치해석적 연구 (A Numerical Study on Electro-osmotic Flow and Stirring Characteristics in a Microchannel with Local Adjustment of Electric Potential)

  • 서용권;허형석
    • 한국가시화정보학회지
    • /
    • 제4권1호
    • /
    • pp.31-40
    • /
    • 2006
  • In this study a newly designed electro-osmotic micro-mixer is proposed. This study is composed of a channel and metal electrodes attached locally on the side wall surface ultimately to control the mixing effect. To obtain the flow patterns, numerical computation was performed by using a commercial code, CFD-ACE. The fluid-flow solutions are the cast into studying the characteristics of stirring in terms of the mixing index. It was shown that the local control of the electric potential can indeed contribute to the enhancement of mixing effect.

  • PDF

2단식 Weis-Foghg형 선박 추진기구의 유동장 특성계산 (Flowfield Calculation for Ship's Propulsion Mechanism of Two-Stage Weis-Fogy Type)

  • 노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.371-380
    • /
    • 1998
  • The flow patterns and dynamic properties of ship's propulsion mechanism of two-stage Weis-Fogh type are studied by the discrete vortex method. In order to study the effects of the interaction of the two wings two cases of the phase differences of the wing's motion are considered the same phase and the reverse phase. The flow patterns by simulations correspond to the photographs obtained by flow visualization and flowfield of the propulsion mechanism which is unsteady and complex is clearly visualized by numerical simulations. The time histories of the thrust an the drag coefficients on the wings are also calculated and the effects of the interaction of the two wings are numerically clarified.

  • PDF

FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석 (Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling)

  • 문지후;김대겸
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

층류파형 액막의 유동특성에 관한 연구 (A study on the flow characteristics of laminar wavy film)

  • 김진태;이계한
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.628-636
    • /
    • 1997
  • Flow visualization technique incorporating photochromic dye is used to study the flow characteristics of the gravity driven laminar wavy film. The film thickness and wave speed are successfully measured by flow visualization. As the inclination angle increases, the waves have higher peaks and lower substrate thickness. The measured cross stream velocity at the free surface is up to 10% of stream wise velocity, which shows enhanced mixing in the lump of the film. The measured stream wise velocity profiles are close to parabolic profile near the substrate and the peak but show significant velocity defect near the rear side of the wave. The measured wall shear rate distributions show good agreement with the previous workers' numerical results.

에어포일 이산소음 특성에 관한 연구 (A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow)

  • Kim, H. J.;Lee, S.;N. Fujisawa
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.365.2-365
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The numerical simulation was carried out by LES. (omitted)

  • PDF

수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화 (Flow Visualization of Plastic type PCV Valve with Horizontal Force)

  • 최윤환;이연원
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.