• 제목/요약/키워드: Numerical example

검색결과 2,186건 처리시간 0.032초

A Study on Integrated Operation of School Bus in Suburbs (교외지역 통학버스 통합 운영 방안 연구)

  • Ko, Young Dae;Oh, Yonghui
    • Journal of Korean Society for Quality Management
    • /
    • 제46권4호
    • /
    • pp.899-910
    • /
    • 2018
  • Purpose: Generally, since the population density is lower in suburban areas, the distance to school is inevitably long. Therefore, schools in suburban areas often operate school buses to improve student welfare. However, since school buses are usually used only during going to and from school, the utilization rates are relatively low. Therefore, this study aims to establish integrated operation plan of public school bus covering all schools. Methods: It is necessary to decide which school buses will serve the specific demand node which want to go to certain school in order to design an integrated operation plan for school buses. Therefore, a mathematical model is developed for minimizing the total number of vehicles and the distance of transportation by reflecting the characteristics of school buses and students as constraints. To solve the proposed mathematical model, CPLEX, a commercial solver, is applied. Results: To validate and to confirm the proposed process, numerical example is designed with the comparison between before and after integrated operations of school buses in terms of total operation cost. The result shows that the integrated operation can lead the reduction of the number of school buses as well as the decreasing of the fuel cost. Conclusion: This study provides the quantitative method to perform the integrated operation of school buses in suburban areas. The optimal operation strategy is required because there are more complex decision-making elements considering the integrated operation. It is expected to apply this research result at real situation to expand this services based on an optimal operation.

Efficient Computation of Square Roots in Finite Fields $F{_p}{^{k}}$ (유한체 $F{_p}{^{k}}$에서 효율적으로 제곱근을 구하는 알고리즘들)

  • Han, Dong-Guk;Choi, Doo-Ho;Kim, Ho-Won;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제18권6A호
    • /
    • pp.3-15
    • /
    • 2008
  • In this paper we study exponentiation in finite fields $F{_p}{^{k}}$(k is odd) with very special exponents such as they occur in algorithms for computing square roots. Our algorithmic approach improves the corresponding exponentiation independent of the characteristic of $F{_p}{^{k}}$. To the best of our knowledge, it is the first major improvement to the Tonelli-Shanks algorithm, for example, the number of multiplications can be reduced to at least 60% on average when $p{\equiv}1$ (mod 16). Several numerical examples are given that show the speed-up of the proposed methods.

New Stability Condition for Discrete Delayed System with Unstructured Uncertainty (비구조화된 불확실성을 갖는 이산 지연 시스템의 새로운 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • 제24권6호
    • /
    • pp.607-612
    • /
    • 2020
  • In this paper, we deal with the stability of linear discrete systems with time-varying delays and unstructured uncertainty. Stability conditions are derived based on Lyapunov stability theory, and can include the effect of uncertainty. The unstructured uncertainty in the papaer which can not be figured out its exact characteristics and only can be expreesed by its magnitude is considered. Compared with the previous results on the stability, the new results can expand the applicable systems and alleviate the stability conditions which are more effective and powerful. The proposed stability condition is expressed in the form of an simple inequality, and includes the both effects of the uncertainties and time-varying delay. We present the results comparing the new stability condition with the existing results, and verify the effectiveness and the superiority of the proposed results through numerical example.

On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes

  • Heidari, Farshad;Taheri, Keivan;Sheybani, Mehrdad;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.533-545
    • /
    • 2021
  • What is desirable in engineering is to bring the engineering model as close to reality as possible while the simplicity of model is also considered. In recent years, several studies have been performed on nanocomposites but some of these studies are somewhat far from reality. For example, in many of these studies, the carbon nanotubes (CNTs) are assumed completely straight, flawless and uniformly distributed throughout the matrix but by studying nanocomposites, we find that this is not the case. In this paper, three steps have been taken to bring the presented models for nanocomposites closer to reality. One is that assuming the straightness of nanotubes is removed and the waviness is considered. Also, the nanotubes are not considered to be pristine and the influence of defect is included in accordance with reality. In addition, the approximation of uniform distribution of nanotubes is ignored and according to experimental observations, the effect of nanotube aggregation is considered. As far as we know, this is the first study on these three topics together in an article. Moreover, we also include the size effects in our models for nanocomposites. To show the accuracy of our models, our results are calibrated with experimental results and compared with theoretical model. For numerical examples, we present the buckling behaviors of nanocomposites including the size effects using nonlocal theory and compare the results of our models with the results of models with above-mentioned approximations.

The Analysis of COVID-19 Pooled-Testing Systems with False Negatives Using a Queueing Model (대기행렬을 이용한 위음성률이 있는 코로나 취합검사 시스템의 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제44권4호
    • /
    • pp.154-168
    • /
    • 2021
  • COVID-19 has been spreading all around the world, and threatening global health. In this situation, identifying and isolating infected individuals rapidly has been one of the most important measures to contain the epidemic. However, the standard diagnosis procedure with RT-PCR (Reverse Transcriptase Polymerase Chain Reaction) is costly and time-consuming. For this reason, pooled testing for COVID-19 has been proposed from the early stage of the COVID-19 pandemic to reduce the cost and time of identifying the COVID-19 infection. For pooled testing, how many samples are tested in group is the most significant factor to the performance of the test system. When the arrivals of test requirements and the test time are stochastic, batch-service queueing models have been utilized for the analysis of pooled-testing systems. However, most of them do not consider the false-negative test results of pooled testing in their performance analysis. For the COVID-19 RT-PCR test, there is a small but certain possibility of false-negative test results, and the group-test size affects not only the time and cost of pooled testing, but also the false-negative rate of pooled testing, which is a significant concern to public health authorities. In this study, we analyze the performance of COVID-19 pooled-testing systems with false-negative test results. To do this, we first formulate the COVID-19 pooled-testing systems with false negatives as a batch-service queuing model, and then obtain the performance measures such as the expected number of test requirements in the system, the expected number of RP-PCR tests for a test sample, the false-negative group-test rate, and the total cost per unit time, using the queueing analysis. We also present a numerical example to demonstrate the applicability of our analysis, and draw a couple of implications for COVID-19 pooled testing.

Consensus-based Cooperative Control for multiple leaders and single follower with interaction nonlinearities (상호작용 비선형성이 있는 다중 리더와 단일 추종자를 위한 일치 기반의 협력 제어)

  • Tack, Han-Ho;Lim, Young-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권11호
    • /
    • pp.1663-1669
    • /
    • 2021
  • This paper considers the cooperative control problem for multiple leaders and a single follower with interactions. The leaders are controllable, and the follower has interactions with all leaders and is controlled by the interactions. Then, we study the cooperative control problem that achieves the consensus by controlling the leaders. The leaders and the follower are modeled by the single-integrator and the double-integrator, respectively, and it is assumed that the interactions have the nonlinearities. The leaders can estimate the interaction between the follower and exchange the estimated information with neighbors. Then, this paper proposes the consensus-based cooperative control algorithm using the information exchange of the estimated interactions and the virtual velocity variables to achieve the velocity consensus. We analyze the convergence of the agents to the common state based on the Lasalle's Invaraince Principle. Finally, we provide the numerical example to validate the theoretical results.

Verification of the Seismic Performance Evaluation Methods for Enclosure Dam (기존 방조제의 내진성능평가 방법 검증)

  • Kim, Kwangjoon;Kim, Hyunguk;Kim, Sung-Ryul;Lee, Jinsun
    • Journal of the Korean Geotechnical Society
    • /
    • 제38권5호
    • /
    • pp.19-33
    • /
    • 2022
  • Newmark's sliding block analysis is the most commonly used method for predicting earthquake-induced permanent displacement of embankment slopes. Additionally, it yields the amount of slip circle sliding using the limit equilibrium theory. Thus, permanent displacement does not occur until the seismic load exceeds the yield acceleration, which induces sliding of the slip circle. The evolution of Newmark's sliding block analysis has been made by introducing the numerical seismic response analysis results since it was introduced. This study compares seismic performance evaluation results for the example enclosure dam section with the analysis methods. As a result, earthquake-induced permanent displacement using Newmark's sliding block analysis did not occur for the enclosure dam, indicating a high safety factor. However, nonlinear response history analysis gave reasonable results.

Two-dimensional OCDMA Encoder/Decoder Composed of Double Ring Add/Drop Filters and All-pass Delay Filters (이중 링 Add/Drop 필터와 All-pass 지연 필터로 구성된 이차원 OCDMA 인코더/디코더)

  • Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • 제33권3호
    • /
    • pp.106-112
    • /
    • 2022
  • A two-dimensional optical code division multiple access (OCDMA) encoder/decoder, which is composed of add/drop filters and all-pass filters for delay operation, is proposed. An example design is presented, and its feasibility is illustrated through numerical simulations. The chip area of the proposed OCDMA encoder/decoder could be about one-third that of a previous OCDMA device employing delay waveguides. Its performance is numerically investigated using the transfer-matrix method combined with the fast Fourier transform. The autocorrelation peak level over the maximum cross-correlation level for incorrect wavelength hopping and spectral phase code combinations is greater than 3 at the center of the correctly decoded pulse, which assures a bit error rate lower than 10-3, corresponding to the forward error-correction limit.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Analysis of a Queueing Model with a Two-stage Group-testing Policy (이단계 그룹검사를 갖는 대기행렬모형의 분석)

  • Won Seok Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제45권4호
    • /
    • pp.53-60
    • /
    • 2022
  • In a group-testing method, instead of testing a sample, for example, blood individually, a batch of samples are pooled and tested simultaneously. If the pooled test is positive (or defective), each sample is tested individually. However, if negative (or good), the test is terminated at one pooled test because all samples in the batch are negative. This paper considers a queueing system with a two-stage group-testing policy. Samples arrive at the system according to a Poisson process. The system has a single server which starts a two-stage group test in a batch whenever the number of samples in the system reaches exactly a predetermined size. In the first stage, samples are pooled and tested simultaneously. If the pooled test is negative, the test is terminated. However, if positive, the samples are divided into two equally sized subgroups and each subgroup is applied to a group test in the second stage, respectively. The server performs pooled tests and individual tests sequentially. The testing time of a sample and a batch follow general distributions, respectively. In this paper, we derive the steady-state probability generating function of the system size at an arbitrary time, applying a bulk queuing model. In addition, we present queuing performance metrics such as the offered load, output rate, allowable input rate, and mean waiting time. In numerical examples with various prevalence rates, we show that the second-stage group-testing system can be more efficient than a one-stage group-testing system or an individual-testing system in terms of the allowable input rates and the waiting time. The two-stage group-testing system considered in this paper is very simple, so it is expected to be applicable in the field of COVID-19.